refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 14 results
Sort by

Filters

Technology

Platform

accession-icon GSE86472
Estrogenic effects of ingredients of glyphosate-based herbicide ingredients in human breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Glyphosate-based herbicides are the major pesticides used worldwide. There is an intense debate on the estrogenic effects of their ingredients. We have compared the estrogenic effects of glyphosate (the active principle), polyethoxylated tallowamine (a co-formulant), and a commercial formulations containing different co-formulants to those of estradiol and bisphenol A in the MCF-7 human breast cancer cell line. The gene expression profiles were determined using the Affymetrix Human Transcriptome 2.0 Array.

Publication Title

Evaluation of estrogen receptor alpha activation by glyphosate-based herbicide constituents.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE62240
A novel approach to Alzheimers Disease treatment: HDACs & PDE5 inhibition
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Considering the numerous complex and different pathological mechanisms involved in Alzheimers disease (AD) progression, treatments targeting a single cause may lead to limited benefits. The goal of this study was the identification of a novel mode of action for this unmet need. Pharmacological tool compounds: suberoylanilide hydroxamic acid (SAHA) and tadalafil, targeting histone deacetylases (HDAC) and phosphodiesterase 5 (PDE5) respectively, were utilized simultaneously for in-vitro and in-vivo Proof-of-Concept (PoC). A synergistic effect was observed in the amelioration of AD signs using the combination therapy in Tg2576 mice. Finally, a therapeutic agent, CM-414, inhibiting simultaneously HDAC2/6 and PDE5 was generated and tested in Tg2576 mice. CM-414 reversed cognitive impairment, reduced amyloid and tau pathology, and rescued dendritic spine density loss in the hippocampus in AD mice. Importantly, the effect obtained was present after a 4-weeks wash-out period.

Publication Title

Concomitant histone deacetylase and phosphodiesterase 5 inhibition synergistically prevents the disruption in synaptic plasticity and it reverses cognitive impairment in a mouse model of Alzheimer's disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP063877
Progressive chromatin condensation and H3K9 methylation regulate the differentiation of embryonic and hematopoietic stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Epigenetic regulation serves as the basis for stem cell differentiation into distinct cell types, but it is unclear how global epigenetic changes are regulated during this process. Here, we tested the hypothesis that global chromatin organization affects the lineage potential of stem cells and that manipulation of chromatin dynamics influences stem cell function. Using nuclease sensitivity assays, we found a progressive decrease in chromatin digestion between pluripotent embryonic stem cells (ESCs), multipotent hematopoietic stem and progenitor cells (HSPCs), and mature hematopoietic cells. Quantification of chromatin composition by high-resolution microscopy revealed that ESCs contain significantly more euchromatin than HSPCs, with a further reduction in euchromatin as HSPCs transition into mature cells. Increased cellular maturation also led to heterochromatin localization to the nuclear periphery. Functionally, prevention of heterochromatin formation by inhibition of the histone methyltransferase G9a resulted in delayed hematopoietic stem cell (HSC) differentiation. Our results demonstrate significant global rearrangements of chromatin structure during embryonic and adult stem cell differentiation, and that heterochromatin formation by H3K9 methylation is an important regulator of HSC differentiation. Overall design: Examination of gene expression profile of in vitro cultured mouse HSC with the G9a inhibitor UNC0638

Publication Title

Progressive Chromatin Condensation and H3K9 Methylation Regulate the Differentiation of Embryonic and Hematopoietic Stem Cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE66724
Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis with no increased bleeding risk
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Atrial fibrillation (AF) is a major risk factor for cardioembolic stroke. Anticoagulant drugs are effective in preventing AF-related stroke. However, the high frequency of anticoagulant-associated major bleeding is a major concern particularly when antiplatelet treatment is simultaneously administered. Here, microarray analysis in peripheral blood cells in eight patients with AF and stroke and eight AF subjects without stroke identified a stroke related gene expression pattern. HSPA1B, which encodes for heat-shock protein 70 kDa (Hsp70), was the most differentially expressed gene. This gene was downregulated in stroke subjects, a finding confirmed further in an independent AF cohort of 200 individuals. Hsp70 knock-out (KO) mice subjected to different thrombotic challenges developed thrombosis significantly earlier than their wild-type (WT) counterparts.

Publication Title

Hsp70 protects from stroke in atrial fibrillation patients by preventing thrombosis without increased bleeding risk.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE48893
Replication Stress is a Potent Driver of Functional Decline in Aging in Hematopoietic Stem Cells
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

To understand at the molecular level the differences between old HSCs and young HSCs we have performed genome-wide analyses using Affymetrix Gene ST 1.0 microarrays with FACS purified cell populations. In contrast to other datasets comparing young and old HSCs, we compared both young and old HSCs and GMPs, and subtracted for genes that were also differentially expressed between young and old GMPs using a zero-intercept linear model. This allowed us to identify 913 significantly differentially expressed genes that were specific to old HSCs and segregated into different clusters.

Publication Title

Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE78932
Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs with in vivo activity in hematological malignancies
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Illumina HiSeq 2000

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE78517
Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs with in vivo activity in hematological malignancies [array]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The indisputable role of epigenetics in cancer and the fact that epigenetic alterations can be reversed have favored development of epigenetic drugs. In this study, we have design and synthesize potent novel, selective and reversible chemical probes that simultaneously inhibit the G9a and DNMTs methyltransferase activity. In vitro treatment of hematological neoplasia (Acute Myeloid Leukemia-AML, Acute Lymphoblastic Leukemia-ALL and Diffuse Large B-cell Lymphoma-DLBCL) with the lead compound CM-272, inhibited cell proliferation and promoted apoptosis, inducing interferon stimulated genes and immunogenic cell death. CM-272 significantly prolonged survival of AML, ALL and DLBCL xenogeneic models. Our results represent the discovery of first-in-class dual inhibitors of G9a/DNMTs and establish this chemical series, as a promising therapeutic tool for unmet needs in hematological tumors.

Publication Title

Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE27686
Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes molecularly distinct from physiologic stem cell aging
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Somatic stem cells mediate tissue maintenance for the lifetime of an organism. Despite the well-established longevity that is a prerequisite for such function, accumulating data argue for compromised stem cell function with age. Identifying the mechanisms underlying age-dependent stem cell dysfunction is therefore key to understand the aging process.

Publication Title

Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE44923
An Epigenetic Component of Hematopoietic Stem Cell Aging Amenable to Reprogramming Into a Young State
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Aging of hematopoietic stem cells (HSCs) leads to several functional changes, including alterations affecting self-renewal and differentiation. While it is well established that many of the age-induced changes are intrinsic to HSCs, less is known about the stability of this state. Here, we entertained the hypothesis that HSC aging is driven by the acquisition of permanent genetic mutations. To examine this issue at a functional level in vivo, we applied induced pluripotent stem (iPS) cell reprogramming of aged hematopoietic progenitors and allowed the resulting aged-derived iPS cells to reform hematopoiesis via blastocyst complementation. Next, we functionally characterized iPS-derived HSCs in primary chimeras and following the transplantation of 're-differentiated' HSCs into new hosts; the gold standard to assess HSC function. Our data demonstrate remarkably similar functional properties of iPS-derived and endogenous blastocyst-derived HSCs, despite the extensive chronological and proliferative age of the former. Our results therefore favor a model in which an underlying, but reversible, epigenetic component is a hallmark of HSC aging rather than being driven by an increased DNA mutation burden.

Publication Title

An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049304
Intrinsic Protection From Leukemic Transformation at The Level of Hematopoietic Stem Cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Genome wide RNA-seq from pGM and HSCs in response to expression of the MLL-ENL fusion gene Overall design: Examination of mRNA abundance in two cell types with or without induction of the MLL-ENL fusion gene (following 48h of culture)

Publication Title

Hematopoietic stem cells are intrinsically protected against MLL-ENL-mediated transformation.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact