refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 41 results
Sort by

Filters

Technology

Platform

accession-icon GSE10258
Gene expression profiling of AML
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

AML/MDS patients carrying 11q amplifications involving the mixed lineage leukemia gene (MLL) locus are characterized by a later onset, a complex aberrant karyotype (CAK) frequently including deletions within 5q, 17p and 7q, as well as fast progression of the disease with extremely poor prognosis. We and other have shown that the MLL gene is over expressed in amplified cases, however, in most of the cases the amplified region is not restricted to the MLL locus. In the present study we investigated 19 patients with AML/MDS and MLL gain/amplification [15 AML (two secondary, following MDS and PV, and three therapy related) and 4 MDS cases (two therapy related)]. By means of array CGH performed in 12 patients (GSE9928) we were able to delineate the minimal deleted regions within 5q, 17p and 7q and identified three independent regions 11q/I-III that were amplified in all cases. Gene expression profiles established in 15 cases were used to define the candidate genes within these regions. Interestingly, analysis of our data suggests an interdependency of genes influenced by losses of 5q and 17p and expression of genes present in 11q23-25. Additionally, we demonstrate that the gene expression signature can be used to discriminate AML/MDS with MLL amplification from all other types of AML, thus, indicating specific pathogenesis present in this entity.

Publication Title

AML/MDS with 11q/MLL amplification show characteristic gene expression signature and interplay of DNA copy number changes.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon SRP180359
Epithelial mesenchymal transition (EMT) in A549 NSCLC cells. TGFbeta was used to induce EMT, RNA isolated and subjected to RNAseq on Illumina HiSeq
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The capacity of cancer cells to undergo epithelial mesenchymal trans-differentiation has been implicated as a factor driving metastasis, through the acquisition of enhanced migratory/invasive cell programs and the engagement of anti-apoptotic mechanisms promoting drug and radiation resistance. Our aim was to define molecular signaling changes associated with mesenchymal trans-differentiation in two KRas mutant NSCLC models. We focused on central transcription and epigenetic regulators predicted to be important for mesenchymal cell survival. Overall design: Haley, J.A., Haughney, E., Ullman, E., Bean, J., Haley, J.D.* and Fink, M.Y. (2014) 'Altered Transcriptional Control Networks with Trans-Differentiation of Isogenic Mutant KRas NSCLC Models' Front. Oncology, doi/10.3389/fonc.2014.00344.

Publication Title

Altered Transcriptional Control Networks with Trans-Differentiation of Isogenic Mutant-KRas NSCLC Models.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE80236
Identification of miR-210 target genes in T20 patient-derived sphere culture
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Hypoxia is known to regulate tumor-initiating cells and to have an effect on miRNA expression. We were interested in studying the role of hypoxia-induced miR-210 in colorectal cancer patient-derived sphere cultures.

Publication Title

Hypoxia-responsive miR-210 promotes self-renewal capacity of colon tumor-initiating cells by repressing ISCU and by inducing lactate production.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE89524
Identification of differentially expressed miRNAs between SW480 and SW620 spheroid cultures
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE89523
Identification of differentially expressed genes between SW480 and SW620 spheroid cultures [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The colorectal cancer (CRC) cell line pair SW480/SW620 is an accepted model to study CRC progression and metastasis formation. Studying gene expression differences might allow to uncover molecular mechanisms that underlie metastasis initiation

Publication Title

The miR-371∼373 Cluster Represses Colon Cancer Initiation and Metastatic Colonization by Inhibiting the TGFBR2/ID1 Signaling Axis.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP151272
RNA-Seq: Smad4-iECKO vs Smad4f/f P7 isolated retinal endothelial cells (iECKO=inducible, endothelial cell specific knockout)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To identify potential biological targets of the TGFß pathway involved in AVM formation, we performed RNA-seq on endothelial cells (ECs) isolated from a Smad4 inducible, EC specific knockout (Smad4-iECKO; Smad4f/f;Cdh5-CreERT2) mouse model that develops retinal AVMs. Overall design: We sequenced a total of 6 samples. We used three wild type samples (Smad4f/f- samples names: Lit38s45, Lit38s6, Lit40s56) and three mutant samples (Smad4f/f;Cdh5-CreERT2- sample names: Lit38s12, Lit38s37, Lit40s12). For more detailed information please see supplemental document: GSE116230_Smad4ff_vs_Smad4iECKO.report.pdf

Publication Title

Angiopoietin-2 Inhibition Rescues Arteriovenous Malformation in a Smad4 Hereditary Hemorrhagic Telangiectasia Mouse Model.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE36923
Microarray Gene Expression for Undifferentiated Mesenchymal Stem Cells, Adipogenically Differentiated and Dedifferentiation cells
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Bone marrow mesenchymal stem cells (MSC) were adipogenically differentiated followed by dedifferentiation. We are interested to know the new fat markers, adipogenic signaling pathways and dedifferentiation signaling pathways.Furthermore we are also intrested to know that how differentiated cells convert into dedifferentiated progenitor cells. To address these questions, MSC were adipogenically differentiated, followed by dedifferentiation. Finally these dedifferentiated cells were used for adipogenesis, osteogenesis and chondrogenesis. Histology, FACS, qPCR and GeneChip analyses of undifferentiated, adipogenically differentiated and dedifferentiated cells were performed. Regarding the conversion of adipogenically differentiated cells into dedifferentiated cells, gene profiling and bioinformatics demonstrated that upregulation (DHCR24, G0S2, MAP2K6, SESN3) and downregulation (DST, KAT2, MLL5, RB1, SMAD3, ZAK) of distinct genes play a curcial role in cell cycle to drive the adipogenically differentiated cells towards an arrested state to narrow down the lineage potency. However, the upregulation (CCND1, CHEK, HGF, HMGA2, SMAD3) and downregulation (CCPG1, RASSF4, RGS2) of these cell cycle genes motivates dedifferentiation of adipogenically differentiated cells to reverse the arrested state. We also found new fat markers along with signaling pathways for adipogenically differentiated and dedifferentiated cells, and also observed the influencing role of proliferation associated genes in cell cycle arrest and progression.

Publication Title

Transdifferentiation of adipogenically differentiated cells into osteogenically or chondrogenically differentiated cells: phenotype switching via dedifferentiation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE17105
Gene expression regulated by G-actin switch
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We analysed the G-actin regulated transcriptome by gene expression analysis using previously characterised actin binding drugs. We found many known MAL/MRTF-dependent target genes of serum response factor (SRF) as well as unknown directly regulated genes.

Publication Title

Negative regulation of the EGFR-MAPK cascade by actin-MAL-mediated Mig6/Errfi-1 induction.

Sample Metadata Fields

Time

View Samples
accession-icon GSE108595
Expression data from sorted humanized TREM2 murine microglia
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The R47H variant of TREM2 is associated with higher risk of Alzheimer's disease. We generated mice expressing the common variant or R47H variant of human TREM2

Publication Title

Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE92693
IL-15 sustains IL-7R independent ILC2 and ILC3 development
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

ILC3 contain 3 well-defined subsets, CCR6+ ILC3, NKp46+ ILC3, and CCR6NKp46 DN ILC3. These subsets had not previously been transcriptionally compared and the extent to which they had shared or unique transcriptional profiles remained unclear.

Publication Title

IL-15 sustains IL-7R-independent ILC2 and ILC3 development.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact