refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE2406
WTv.AOXantisense
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Leaf transcriptome comparison of untransformed Col-0 Arabidopsis plants with plants transformed to be anti-sense for AtAOX1a (alternative oxidase). Two bio-replicates were sampled, for a total of four microarray chipsCol-0 and anti-sense leaf tissue from a first planting (samples GSM45208 and GSM45231, respectively), and from a second planting made one week later (samples GSM45209 and GSM45278, respectively). See sample descriptions for growth conditions and microarray procedure.

Publication Title

Characterization of transformed Arabidopsis with altered alternative oxidase levels and analysis of effects on reactive oxygen species in tissue.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41572
Molecular mechanisms of pulmonary response progression in crystalline silica exposed rats
  • organism-icon Rattus norvegicus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

The capability to detect target organ toxicity as well as to determine the molecular mechanisms underlying such toxicity by employing surrogate biospecimens that can be obtained by a non-invasive or minimally invasive procedure has significant advantage in occupational toxicology. Pulmonary toxicity and global gene expression profile in the lungs, peripheral blood and bronchoalveolar lavage (BAL) cells were determined in rats at 44-weeks following pulmonary exposure to crystalline silica (15 mg/m3, 6-hours/day, 5 days). A significant elevation in lactate dehydrogenase activity and albumin content observed in the BAL fluid suggested the induction of pulmonary toxicity in the silica exposed rats. Similarly, the observation of histological alterations, mainly type II pneumocyte hyperplasia and fibrosis, in the lungs further confirmed silica-induced pulmonary toxicity in the rats. A significant increase in the number of neutrophils and elevated monocyte chemotactic protein 1 level in the BAL fluids suggested silica-induced pulmonary inflammation in the rats. Determination of global gene expression profile in the lungs, BAL cells, and peripheral blood of the silica exposed rats identified 144, 236, and 51 significantly differentially expressed genes (SDEGs), respectively, compared with the corresponding control samples. Bioinformatics analysis of the SDEGs demonstrated a remarkable similarity in the biological functions, molecular networks and canonical pathways that were significantly affected by silica exposure in the lungs, BAL cells and blood of the rats. Induction of inflammation was identified, based on the bioinformatics analysis of the significantly differentially expressed genes in the lungs, blood and BAL cells, as the major molecular mechanism underlying the silica-induced pulmonary toxicity. The findings of our study demonstrated the potential application of global gene expression profiling of peripheral blood and BAL cells as a valuable minimally invasive approach to study silica-induced pulmonary toxicity in rats.

Publication Title

Molecular mechanisms of pulmonary response progression in crystalline silica exposed rats.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon SRP026537
Transcriptional profiling of a breast cancer cell line panel using RNAseq technology
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerIIx

Description

56 breast cancer cell lines were profiled to identify patterns of gene expression associated with subtype and response to therapeutic compounds. Overall design: Cell lines were profiled in their baseline, unperturbed state.

Publication Title

Modeling precision treatment of breast cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact