refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE23396
Background analysis using yeast RNA on the mouse and human array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2), Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE22974
Background analysis using yeast RNA on the U133 plus 2.0 array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used yeast RNA to estimate background binding for each probe on the human U133 plus 2.0 array.

Publication Title

The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE22975
Background analysis using yeast RNA on the Mouse 430 2.0 array
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We hybridized yeast RNA to the mouse 430 2.0 array to estimate the background binding for each probe.

Publication Title

The Gene Expression Barcode: leveraging public data repositories to begin cataloging the human and murine transcriptomes.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP076037
KSHV LANA upregulates the expression of EGFL7 proteins in BJAB cells
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The objective of this study was to determine the effects of LANA on the expressions of the cellular genes. Overall design: BJAB cells were transduced with lentiviral vector expressing LANA or the control vector, total RNA was extracted for the detection of relative expression of cellular genes in LANA expressing cells.

Publication Title

KSHV LANA upregulates the expression of epidermal growth factor like domain 7 to promote angiogenesis.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP190850
Transcriptome Analysis Reveals Distinct Responses to Physiologic versus Toxic Manganese Exposure in Human Neuroblastoma Cells
  • organism-icon Homo sapiens
  • sample-icon 70 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report the application of RNA-Seq analysis to determine the transcriptional responses to Mn dose, ranging from physiological to toxicological levels in human SH-SY5Y neuroblastoma cells. We find that Mn dose showed widespread effects in abundance of protein coding genes for metabolism of reactive oxygen species, energy sensing, glycolysis, protein homeostasis including the unfolded protein response and transcriptional regulation. Adaptive responses at physiological Mn concentration-10 µM Mn for 5 h, a concentration that did not result in cell death after 24 h increased abundance of differentially expressed genes (DEGs) in the protein secretion pathway that function in protein trafficking and cellular homeostasis.These include BET1 (Golgi vesicular membrane trafficking protein), ADAM10 (ADAM metallopeptidase domain 10) and ARFGAP3 (ADP-ribosylation factor GTPase activating protein 3). In contrast, 5 h exposure to 100 µM Mn, a concentration that caused cell death after 24 h, increased abundance of DEGs for components of the mitochondrial oxidative phosphorylation pathway. In conclusion, this study provides a framework for Mn dose dependent exposure in a human in vitro cell culture model and provides a testable hypothesis for in vivo studies. Importantly, the transcriptome responses at toxic Mn dose demonstrated patterns observed with neurological diseases and suggest that differential functions of the secretory pathway and mitochondria could provide a basis to improve detection and management of adverse environmental and occupational Mn exposures. Overall design: Examination of transcriptomic responses to Mn dose (0,1,5,10,50,100 µM MnCl2 for 5 h) in human SH-SY5Y neuroblastoma cells with three biological replicates per Mn treatment using Illumina HiSeq 2500.

Publication Title

Transcriptome Analysis Reveals Distinct Responses to Physiologic <i>versus</i> Toxic Manganese Exposure in Human Neuroblastoma Cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP159142
ZIKV infection increases HUVECs endothelial barrier permeability and activates inflammatory cytokines
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The objective of this assay was to determine the effects of ZIKV on HUVEC cells Overall design: Purified HUVECs were infected with two strains of ZIKV (PRVABC59 and IBH30656) and mRNA was subjected for differential gene expression

Publication Title

Transcriptome Profiling Reveals Pro-Inflammatory Cytokines and Matrix Metalloproteinase Activation in Zika Virus Infected Human Umbilical Vein Endothelial Cells.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE64839
Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Rat Ref-12 v1, Illumina humanRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64827
Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes [human]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina humanRef-8 v2.0 expression beadchip

Description

Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated nave UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-overexpressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression.

Publication Title

Human umbilical cord matrix mesenchymal stem cells suppress the growth of breast cancer by expression of tumor suppressor genes.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact