refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE142219
ERK1/2 controlled genes ANGPT2 and CXCR4 mediate liver metastasis from colon cancer
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Carcinoma development in colorectal cancer (CRC) is driven by genetic alterations in numerous signaling pathways. Alterations in the RAS-ERK1/2 pathway are associated with the shortest overall survival for patients after diagnosis of CRC metastatic disease, but how RAS-ERK signaling regulates CRC metastasis is still unknown.

Publication Title

ERK1/2 Signaling Induces Upregulation of ANGPT2 and CXCR4 to Mediate Liver Metastasis in Colon Cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE33350
Comparison of metastatic derivatives of colon cancer cell line selected in vivo
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Using a human colorectal cancer cell line we incremented its metastatic capacity in a mouse model of liver and lung metastasis. Afterwards, a comparison between the different metastatic derivatives is done.

Publication Title

Colon cancer cells colonize the lung from established liver metastases through p38 MAPK signalling and PTHLH.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon SRP029274
Mining gene expression data for low doses of radiation and pollutants (dioxin, toluene, formaldehyde)
  • organism-icon Drosophila melanogaster
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Expression profiles of Drosophila melanogaster in response to ionizing radiation, formaldehyde, toluene, and 2,3,7,8-tetrachlorodibenzo-p-dioxin. Overall design: RNA-seq analysis on 25,415 transcripts to measure the change in gene expression in males and females separately. An analysis of the genes unique to each treatment yielded a list of genes as a gene expression signature. In the case of radiation exposure, both sexes exhibited a reproducible increase in their expression of the transcription factors sugarbabe and tramtrack.

Publication Title

Mining gene expression data for pollutants (dioxin, toluene, formaldehyde) and low dose of gamma-irradiation.

Sample Metadata Fields

Age, Cell line, Treatment, Subject

View Samples
accession-icon GSE76974
Expression data from thymic and lymph node mesenchymal stromal subsets.
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Despite their key role in immunity our understanding of primary and secondary lymphoid stromal cell heterogeneity and ontogeny remains limited. Here, using genome-wide expression profiling and phenotypic and localization studies, we identify a functionally distinct subset of BP3-PDPN+PDGFR+/+CD34+ stromal adventitial cells in both lymph nodes and thymus that is located within the perivascular niche surrounding PDPN-PDGFR+/-Esam-1+ITGA7+ pericytes. In re-aggregate organ grafts adult CD34+ adventitial cells gave rise to multiple thymic and lymph node mesenchymal subsets including pericytes, FRC-, MRC- and FDC-like cells, the development of which was lymphoid environment dependent. During thymic ontogeny pericytes developed from a transient population of BP3-PDPN+PDGFR+/+CD34-/lo anlage-seeding progenitors that subsequently up-regulated CD34 and we provide evidence suggesting that similar embryonic progenitors give rise to lymph node mesenchymal subsets. These findings extend the current understanding of lymphoid mesenchymal cell heterogeneity and highlight a role of the CD34+ vascular adventitia as a potential ubiquitous source of lymphoid stromal precursors in postnatal tissues.

Publication Title

Context-Dependent Development of Lymphoid Stroma from Adult CD34(+) Adventitial Progenitors.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE35144
Molecular Evaluation of Patient-Derived Colorectal Cancer Explants as a Pre-clinical Mouse Model of Colorectal Cancer
  • organism-icon Homo sapiens
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mouse models have been developed to investigate colorectal cancer etiology and evaluate new anti-cancer therapies. While genetically engineered and carcinogen-induced mouse models have provided important information with regard to the mechanisms underlying the oncogenic process, xenograft models remain the standard for the evaluation of new chemotherapy and targeted drug treatments for clinical use. However, it remains unclear if drug efficacy data obtained from xenograft models translate into clinically-relevant treatment modalities. In this study, we have generated a panel of 28 patient-derived colorectal cancer explants (PDCCEs), an extension of our previous work, by direct transplantation of human colorectal cancer (CRC) tissues into NOD-SCID mice. A comprehensive histological and molecular evaluation of PDCCEs and their corresponding patient tumor demonstrates that PDCCEs maintain histological features and global biology through multiple passages. Furthermore, we demonstrate that in vivo sensitivity of PDCCEs to oxaliplatin can predict patient outcomes. Our findings suggest that PDCCEs maintain similarity to the patient tumor from which they are derived and can serve as a reliable preclinical model that can be incorporated into future strategies to optimize individual therapy for patients with CRC.

Publication Title

Histological and molecular evaluation of patient-derived colorectal cancer explants.

Sample Metadata Fields

Disease

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact