refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 347 results
Sort by

Filters

Technology

Platform

accession-icon SRP078692
microRNA-132/212 deficiency enhances Ab production and senile plaque deposition in Alzheimer’s disease triple transgenic mice
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The abnormal regulation of amyloid-b (Ab) metabolism (e.g., production, cleavage, clearance) plays a central role in Alzheimer’s disease (AD). Among endogenous factors believed to participate in AD progression are the small regulatory non-coding microRNAs (miRs). In particular, the miR-132/212 cluster is severely reduced in the AD brain. In previous studies we have shown that miR-132/212 deficiency in mice leads to impaired memory and enhanced Tau pathology as seen in AD patients. Here we demonstrate that the genetic deletion of miR-132/212 promotes Ab deposition and amyloid (senile) plaque formation in triple transgenic AD (3xTg-AD) mice. Using RNA-Seq and bioinformatics, we identified genes of the miR-132/212 network with documented roles in the regulation of Ab metabolism, including Tau, Mapk, and Sirt1. Overall design: We used RNA-Seq to analyse the hippocampus of 3xTg-AD mice lacking the miR-132/212 cluster as well as Neuro2a cells overexpressing miR-132 mimics.

Publication Title

microRNA-132/212 deficiency enhances Aβ production and senile plaque deposition in Alzheimer's disease triple transgenic mice.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE4695
Changes in gene expression in dermal fibroblasts following exposure to Et1 peptide
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To determine if aberrant activation of endothelin-1 (Et1) could lead to the dysregulation of many downstream genes, we exposed fibroblasts to exogenous ET1 peptide and assayed for transcriptional changes by microarray. Mouse dermal fibroblasts were treated with exogenous Et1 peptide for 24 hours. ET1 treatment resulted in significant expression changes primarily downregulation of a number of genes. In particular, Tgf2 and Tgf3 were among the downregulated genes, which in turn alter the expression status of their many target genes. These data suggest that the stable silencing of Et1 is important for the phenotypic stability of dermal fibroblasts, and perhaps many other cell types as well.

Publication Title

Localized methylation in the key regulator gene endothelin-1 is associated with cell type-specific transcriptional silencing.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE74917
Expression data from Pseudomonas aeruginosa sbrR and sbrIR mutants versus wild type
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

SbrI and SbrR are an extracytoplasmic function sigma factor and its cognate anti-sigma factor, respectively. To identify the SbrIR regulon, we measured gene expression in wild type PAO1 , PAO1 sbrR, and PAO1 sbrIR mutants using microarrays.

Publication Title

σ Factor and Anti-σ Factor That Control Swarming Motility and Biofilm Formation in Pseudomonas aeruginosa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE15001
Gene expression in the Anopheles gambiae embryo
  • organism-icon Anopheles gambiae
  • sample-icon 62 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14993
Developmental time course of gene expression in Anopheles gambiae embryo
  • organism-icon Anopheles gambiae
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

In order to examine the gene expression in the course of mosquito embryogenesis, microarray assays were performed on staged A. gambiae embryos, from fertilization to 52 hours of development (which is close to hatching at ~50 hours post-fertilization). RNA was extracted from staged embryos roughly every three hours after fertilization, and then hybridized to the A. gambiae transcriptome microarray.

Publication Title

Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14851
Gene expression in the embryonic serosa of Anopheles gambiae
  • organism-icon Anopheles gambiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Plasmodium/Anopheles Genome Array (plasmodiumanopheles)

Description

Whole-genome transcriptome assays were performed with isolated serosa from A. gambiae embryos. These assays identified a large number of genes implicated in the production of the larval cuticle. In D. melanogaster, these genes are activated just once during embryogenesis, during late stages where they are used for the production of the larval cuticle. Evidence is presented that the serosal cells secrete a dedicated serosal cuticle, which protects A. gambiae embryos from desiccation.

Publication Title

Developmental and evolutionary basis for drought tolerance of the Anopheles gambiae embryo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076104
The DPYSL2 gene connects mTOR and schizophrenia
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We report a transcriptome comparison of HEK293 cells modified at the DPYSL2 gene promoter dinucleotide repeat (chr8:26,435,510-26,435,534) by CRISPR/Cas9 to change from the common 11 repeats to the more rare 13 repeats Overall design: 11/11 repeat HEK 293 cells were modified by CRISPR/Cas 9. Cell were flow sorted by the co-transfected GFP and single cells were expanded. From those we selected 4 modified and 8 unmodified clones for RNA seq. RNA was extracted at 80% confluency

Publication Title

The DPYSL2 gene connects mTOR and schizophrenia.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE44543
Expression data from mouse embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Analysis of the transcriptome of -catenin flox/- mES cells in comparison with -catenin null mES cells or -catenin null mES cells stably transfected with an E-cadherin--catenin fusion protein.

Publication Title

E-cadherin is required for the proper activation of the Lifr/Gp130 signaling pathway in mouse embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44265
HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Over the last decade, small noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators in the expression and function of eukaryotic genomes. It has been suggested that viral infections and neurological disease outcome may also be shaped by the influence of small RNAs. This has prompted us to suggest that HIV infection alters the endogenous miRNA expression patterns, thereby contributing to neuronal deregulation and AIDS dementia. Therefore, using primary cultures and neuronal cell lines, we examined the impact of a viral protein (HIV-1 Tat) on the expression of miRNAs due to its characteristic features such as release from the infected cells and taken up by noninfected cells. Using microRNA array assay, we demonstrated that Tat deregulates the levels of several miRNAs. Interestingly, miR-34a was among the most highly induced miRNAs in Tat-treated neurons. Tat also decreases the levels of miR-34a target genes such as CREB protein as shown by real time PCR. The effect of Tat was neutralized in the presence of anti-miR-34a. Using in situ hybridization assay, we found that the levels of miR-34a increase in Tat transgenic mice when compared with the parental mice. Therefore, we conclude that deregulation of neuronal functions by HIV-1 Tat protein is miRNA-dependent.

Publication Title

HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE73699
Differential gene expression in the mesenteric fat among crossbred beef steers with divergent gain and feed intake phenotypes
  • organism-icon Bos taurus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Bovine Gene 1.1 ST Array (bovgene11st)

Description

Steer mesenteric fat transcriptome.

Publication Title

Relationships between the genes expressed in the mesenteric adipose tissue of beef cattle and feed intake and gain.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact