refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1751 results
Sort by

Filters

Technology

Platform

accession-icon GSE42404
The side population of human pancreatic cancer expresses cancer stem cell-associated genes
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Purpose: To explore the side population (SP) in pancreatic ductal adenocarcinoma (PDAC) for its gene expression profile and its association to cancer stem cells (CSC) and to evaluate the value of genes from its gene signature on patient survival.

Publication Title

Human pancreatic cancer contains a side population expressing cancer stem cell-associated and prognostic genes.

Sample Metadata Fields

Sex, Age, Specimen part, Disease stage

View Samples
accession-icon GSE86595
Identification of gene expression changes in RGC neurons treated with synaptogenic proteins
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Astrocyte-secreted proteins induce synapse formation between isolated retinal ganglion cell (RGC) neurons in culture. We asked whether 2 of these proteins, glypican 4 (Gpc4) or thrombospondin 1 (TSP1) induce synapse formation by regulating gene expression in RGCs.

Publication Title

Astrocyte-Secreted Glypican 4 Regulates Release of Neuronal Pentraxin 1 from Axons to Induce Functional Synapse Formation.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE115406
Generating a RAS expression signature in neuroblastoma
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mutations affecting the RAS-MAPK pathway frequently occur in relapse neuroblastoma tumors, which suggests that activation of this pathway is associated with a more aggressive phenotype. To explore this hypothesis we generated several model systems to define a neuroblastoma RAS-MAPK pathway signature. We could show that activation of this pathway in primary tumors indeed correlates with poor survival and is associated with known activating mutations in ALK and other RAS-MAPK pathway genes. From integrative analysis we could show that mutations in PHOX2B, CIC and DMD are also associated with an activated RAS-MAPK pathway. Mutation of PHOX2B and deletion of CIC in neuroblastoma cell lines induces activation of the RAS-MAPK pathway. This activation was independent of phosphorylated ERK in the CIC knock out systems. Furthermore, deletion of CIC causes a significant increase in tumor growth in vivo. These results show that the RAS-MAPK pathway is involved in tumor progression, and establish CIC as a powerful tumor suppressor that functions downstream of this pathway in neuroblastoma.

Publication Title

RAS-MAPK Pathway-Driven Tumor Progression Is Associated with Loss of CIC and Other Genomic Aberrations in Neuroblastoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE53441
Associations of inflammation, iron and early death in sickle cell disease
  • organism-icon Homo sapiens
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Expression profiling using a defined set of iron regulated genes identifies co-regulation of genes and pathways related to inflammatory cytokines

Publication Title

Iron, inflammation, and early death in adults with sickle cell disease.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE62165
Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma
  • organism-icon Homo sapiens
  • sample-icon 131 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

To evaluate the prognostic relevance of molecular subtypes and key transcription factors in pancreatic ductal adenocarcinoma (PDAC), we performed gene expression analysis of whole-tumor tissue obtained from 118 surgically resected PDAC and 13 control samples.

Publication Title

Prognostic relevance of molecular subtypes and master regulators in pancreatic ductal adenocarcinoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2260
Testicular gene expression in SCARKO mice at day 10
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To unravel the molecular mechanisms mediating the effects of androgens on spermatogenesis, testicular gene expression was compared in mice with a Sertoli cell-selective androgen receptor knockout (SCARKO) and littermate controls on postnatal d 10. At this age testicular cell composition is still comparable in SCARKOs and controls. Microarray analysis identified 692 genes with significant differences in expression. A more than 2-fold up- or downregulation by androgen action in Sertoli cells was observed for 28 and 6 genes respectively. The biological relevance of the strongly upregulated genes was supported by the finding that several of them were previously described to be androgen-regulated or essential for spermatogenesis. Serine protease inhibitors were overrepresented in the same subgroup suggesting a role for androgens in cell junction dynamics and tissue restructuring events during spermatogenesis. A time course experiment (d8-d20), followed by cluster analysis allowed the identification of typical expression patterns of differentially expressed testicular genes during initiation of spermatogenesis. Three genes with a pattern closely resembling that of Pem, a prototypal androgen-regulated gene in Sertoli cells, were selected for confirmation by RT-PCR and further analysis. The data confirm that the SCARKO model allows identification of novel androgen-regulated genes in the testis. This particular series represents all data from d 10. The additional expression data from the time course (d8-d20) is represented by series GSE2259 ("Testicular gene expression in SCARKO mice during prepuberty").

Publication Title

The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2259
Testicular gene expression in SCARKO mice during prepuberty
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To unravel the molecular mechanisms mediating the effects of androgens on spermatogenesis, testicular gene expression was compared in mice with a Sertoli cell-selective androgen receptor knockout (SCARKO) and littermate controls on postnatal d 10. At this age testicular cell composition is still comparable in SCARKOs and controls. Microarray analysis identified 692 genes with significant differences in expression. A more than 2-fold up- or downregulation by androgen action in Sertoli cells was observed for 28 and 6 genes respectively. The biological relevance of the strongly upregulated genes was supported by the finding that several of them were previously described to be androgen-regulated or essential for spermatogenesis. Serine protease inhibitors were overrepresented in the same subgroup suggesting a role for androgens in cell junction dynamics and tissue restructuring events during spermatogenesis. A time course experiment (d8-d20), followed by cluster analysis allowed the identification of typical expression patterns of differentially expressed testicular genes during initiation of spermatogenesis. Three genes with a pattern closely resembling that of Pem, a prototypal androgen-regulated gene in Sertoli cells, were selected for confirmation by RT-PCR and further analysis. The data confirm that the SCARKO model allows identification of novel androgen-regulated genes in the testis.

Publication Title

The effect of a sertoli cell-selective knockout of the androgen receptor on testicular gene expression in prepubertal mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE102124
Gene expression profiling of treated and untreated primary prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

In clinical trials assessing neoadjuvant androgen deprivation therapy plus next-generation androgen receptor axis inhibitors, a subset of patients fail to demonstrate a complete pathologic response following treatment and radical prostatectomy. We performed transcriptome analyses on laser capture microdissected foci of residual tumor from these patients.

Publication Title

Neoadjuvant-Intensive Androgen Deprivation Therapy Selects for Prostate Tumor Foci with Diverse Subclonal Oncogenic Alterations.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE8586
Expression profiles of extremely low gestational age newborns as predictors of BPD
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

One third to one half of all infants born before the 28th wek of gestation develop BPD bronchopulmonary dysplasia. Our objective is to evaluate the feasibility of using expression profiling in umbilical cord tissue to discover molecular signatures for developmental staging and for risk of BPD.

Publication Title

Perturbation of gene expression of the chromatin remodeling pathway in premature newborns at risk for bronchopulmonary dysplasia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64366
Comparative in situ gene expression profile of starry-sky tumor-associated macrophages and germinal centre macrophages
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Cells undergoing apoptosis are known to modulate their tissue microenvironments. By acting on phagocytes, notably macrophages, apoptotic cells inhibit immunological and inflammatory responses and promote trophic signaling pathways. Paradoxically because of their potential to cause death of tumor cells and thereby militate against malignant disease progression, both apoptosis and tumor-associated macrophages (TAM) are often associated with poor prognosis in cancer. In order to better understand the influence of tumor cell apoptosis and in particular its effect on TAM, we investigated global gene expression signatures of undisturbed TAM engaged in engulfment of apoptotic tumor cells. We studied a xenograft model of an aggressive starry-sky non-Hodgkins lymphoma, Burkitts lymphoma (BL), in which apoptotic tumor cells are common and frequently observed in association with the starry-sky TAM (SS-TAM, so called because they appear histologically as stars in a sky of tumor cells) that accumulate in these tumors. We used a BL cell line (BL2) whose cells phenotypically resemble the tumor biopsy cells from which the line was derived including the capacity to undergo apoptosis constitutively. BL xenografts in SCID mice closely recapitulated the starry-sky histological picture of the human lymphoma. Due to the high sensitivity of macrophages to their environments, we adopted laser-capture microdissection of individual SS-TAM in BL xenografts in order to obtain unbiased in situ transcriptional profiles of these cells, which we compared specifically with those of similarly-captured macrophages, the tingible-body macrophages from normal germinal centers (GCM). The rationale for this comparison was based upon BL being a germinal center malignancy and tingible-body macrophages being regarded as normal equivalents of SS-TAM.

Publication Title

Oncogenic properties of apoptotic tumor cells in aggressive B cell lymphoma.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact