refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1656 results
Sort by

Filters

Technology

Platform

accession-icon GSE72220
Application of a clinical assay for staging and prognosis of prostate cancer diagnosed in needle core biopsy specimens
  • organism-icon Homo sapiens
  • sample-icon 147 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Molecular and genomic analysis of microscopic quantities of tumor from formalin-fixed and paraffin-embedded (FFPE) biopsies has many unique challenges. Here we evaluated the feasibility of obtaining transcriptome-wide RNA expression to measure prognostic classifiers from diagnostic prostate needle core biopsies.

Publication Title

Application of a Clinical Whole-Transcriptome Assay for Staging and Prognosis of Prostate Cancer Diagnosed in Needle Core Biopsy Specimens.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP044373
Transcriptomic analysis of an archived bladder cancer cohort
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000, IlluminaMiSeq

Description

Establishment and application of RNAseq based transcriptome analayis on an archivaed bladder cancer cohort. Overall design: Total RNA profilling 61 archived bladder cancer samples and comparison of 4 pairs of fresh frozen and FFPE bladder cancer samples.

Publication Title

Next-generation RNA sequencing of archival formalin-fixed paraffin-embedded urothelial bladder cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE141821
Transcriptomic analysis of CLL4-induced liver injury in WT and DPT KO mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

C57Bl6J mice were injected CCL4 for 8 weeks to induce liver injury and livers were used to prepare RNA.

Publication Title

Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE84043
Genomic hallmarks of localized, non-indolent prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Illumina HumanMethylation450 BeadChip (HumanMethylation450_15017482), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic hallmarks of localized, non-indolent prostate cancer.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE84042
Genomic hallmarks of localized, non-indolent prostate cancer
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20), Illumina HumanMethylation450 BeadChip (HumanMethylation450_15017482), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Prostate tumours are highly variable in their response to therapies, but clinically available prognostic factors can explain only a fraction of this heterogeneity. Here we analysed 200 whole-genome sequences and 277 additional whole-exome sequences from localized, non-indolent prostate tumours with similar clinical risk profiles, and carried out RNA and methylation analyses in a subset. These tumours had a paucity of clinically actionable single nucleotide variants, unlike those seen in metastatic disease. Rather, a significant proportion of tumours harboured recurrent non-coding aberrations, large-scale genomic rearrangements, and alterations in which an inversion repressed transcription within its boundaries. Local hypermutation events were frequent, and correlated with specific genomic profiles. Numerous molecular aberrations were prognostic for disease recurrence, including several DNA methylation events, and a signature comprised of these aberrations outperformed well-described prognostic biomarkers. We suggest that intensified treatment of genomically aggressive localized prostate cancer may improve cure rates.

Publication Title

Genomic hallmarks of localized, non-indolent prostate cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE64619
A Molecular Portrait of Potentially Curable Prostate Cancer
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Herein we describe a molecular portrait of potentially curable, Gleason 7 and intermediate risk prostate cancer based on genome-wide CNV profiles of 96 patients, and subsequent whole-genome sequencing of 28 tumours from 10 patients, using DNA quantities that are achievable in diagnostic biopsies (50 ng). We show that Gleason 7 cancer is highly heterogeneous at the SNV, CNV, and intra-chromosomal translocation levels, and is characterized by a very low number of recurrent SNVs but significant structural variation. We identified a novel recurrent MYCL1 amplification, which was strongly associated with TP53 deletion and prognostic for biochemical recurrence in this cohort. Moreover, we identified clear evidence of divergent tumour evolution in multi focal cancer and, in 2/5 cases evaluated, multiple tumours of independent clonal origin. Taken together, these data represent the first systematic evaluation of the differential genomics of potentially curable prostate cancer, and strongly suggest that a more robust understanding of the relationship between genetic heterogeneity and clinical outcomes is required to effectively develop biomarkers of prognosis based on tumour genomics.

Publication Title

Spatial genomic heterogeneity within localized, multifocal prostate cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE18497
Diagnosis-relapse in ALL
  • organism-icon Homo sapiens
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Almost a quarter of pediatric patients with Acute Lymphoblastic Leukemia (ALL) suffer from relapses. The biological mechanisms underlying therapy response and development of relapses have remained unclear. In an attempt to better understand this phenomenon, we have analyzed 41 matched diagnosis relapse pairs of ALL patients using genomewide expression arrays (82 arrays) on purified leukemic cells. In roughly half of the patients very few differences between diagnosis and relapse samples were found (stable group), suggesting that mostly extra-leukemic factors (e.g., drug distribution, drug metabolism, compliance) contributed to the relapse. Therefore, we focused our further analysis on 20 samples with clear differences in gene expression (skewed group), reasoning that these would allow us to better study the biological mechanisms underlying relapsed ALL. After finding the differences between diagnosis and relapse pairs in this group, we identified four major gene clusters corresponding to several pathways associated with changes in cell cycle, DNA replication, recombination and repair, as well as B cell developmental genes. We also identified cancer genes commonly associated with colon carcinomas and ubiquitination to be upregulated in relapsed ALL. Thus, about half of relapses are due to selection or emergence of a clone with deregulated expression of a genes involved in pathways that regulate B cell signaling, development, cell cycle, cellular division and replication.

Publication Title

Genome-wide expression analysis of paired diagnosis-relapse samples in ALL indicates involvement of pathways related to DNA replication, cell cycle and DNA repair, independent of immune phenotype.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon SRP170629
RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Background and Purpose—Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. Methods—We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. Results—We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. Conclusions—For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture. Overall design: RNA sequencing of 44 intracranial aneurysm samples (including 21 unruptured, 22 ruptured and 1 undetermined) and 16 control samples of the intracranial cortical artery

Publication Title

RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE40672
Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Colon cancer is a major cause of cancer deaths in Western countries and is associated with diets high in red meat. Heme, the iron-porphyrin pigment of red meat, induces cytotoxicity of gut contents which injures surface cells leading to compensatory hyperproliferation of crypt cells. This hyperproliferation results in epithelial hyperplasia which increases the risk of colon cancer. In humans, a high red-meat diet increases Bacteroides spp in feces. Therefore, we simultaneously investigated the effects of dietary heme on colonic microbiota and on the host mucosa of mice. Whole genome microarrays showed that heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. Using 16S rRNA phylogenetic microarrays, we investigated whether bacteria play a role in this changed signaling. Heme increased Bacteroidetes and decreased Firmicutes in colonic contents. This shift was most likely caused by a selective susceptibility of Gram-positive bacteria to heme cytotoxic fecal water, which is not observed for Gram-negative bacteria, allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria most probably increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There was no functional change in the sensing of the bacteria by the mucosa, as changes in inflammation pathways and Toll- like receptor signaling were not detected. This unaltered host-microbe cross-talk indicates that the changes in microbiota did not play a causal role in the observed hyperproliferation and hyperplasia.

Publication Title

Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE34253
Dietary heme modulates microbiota and mucosa of mouse colon without significant host-microbe cross talk
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Previously, we showed that dietary heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. In this study we investigated whether bacteria play a role in this changed signaling. Dietary heme increased the Bacteroidetes and decreased the Firmicutes in colonic content. This shift was caused by a selective susceptibility of Gram-positive bacteria to the heme cytotoxic fecal waters, which is not observed for Gram-negative bacteria allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There were no signs of sensing of the bacteria by the mucosa, as changes in TLR signaling were not present. This lack of microbe-host cross talk indicated that the changes in microbiota do not play a causal role in the heme-induced hyperproliferation.

Publication Title

Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact