refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1520 results
Sort by

Filters

Technology

Platform

accession-icon GSE85487
Effects of IFN-a and IFN-b on ex vivo ATL patient pbmcs
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The data contained in this record are used to differentiate between the effects of IFN-a and IFN-b on 48h cultures of the ex vivo pbmcs of ATL patients, using Affymetrix microarrays (HuGene 1.0).

Publication Title

IFN-β induces greater antiproliferative and proapoptotic effects and increased p53 signaling compared with IFN-α in PBMCs of Adult T-cell Leukemia/Lymphoma patients.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE82160
FAS signalling in retroviral neuroinflammation
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We comprehensively explored Fas expression (protein and mRNA) and function in lymphocyte activation, apoptosis, proliferation and transcriptome, using flow cytometry, [3H]-thymidine incorporation and microarray analysis in PBMC from HTLV-1 Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) patients.

Publication Title

A Fas<sup>hi</sup> Lymphoproliferative Phenotype Reveals Non-Apoptotic Fas Signaling in HTLV-1-Associated Neuroinflammation.

Sample Metadata Fields

Specimen part, Disease stage, Treatment

View Samples
accession-icon GSE80008
Systemic disease signature of human cutaneous leishmaniasis
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In addition to the recently published in situ transcriptomics of LCL skin lesions (Novais et al., Khouri et al.), we herein present the first systemic disease signature of localized cutaneous leishmaniasis (LCL), using Affymetrix microarrays (HuGene 1.0) followed by systems biology analysis of the PBMC transciptome of LCL patients (n=18), as compared to healthy controls (n=12).

Publication Title

Systems Approach Reveals Nuclear Factor Erythroid 2-Related Factor 2/Protein Kinase R Crosstalk in Human Cutaneous Leishmaniasis.

Sample Metadata Fields

Specimen part, Disease stage

View Samples
accession-icon GSE46097
Expression data of Participants of Ornish intervention and Control group
  • organism-icon Homo sapiens
  • sample-icon 377 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Intensive lifestyle modification is believed to mediate cardiovascular disease (CVD) risk through traditional pathways that affect endothelial function and progression of atherosclerosis; however, the extent, persistence, and clinical significance of molecular change during lifestyle modification are not well known. Our study reveals that gene expression signatures are significantly modulated by rigorous lifestyle behaviors and track with CVD risk profiles over time.

Publication Title

Intensive cardiovascular risk reduction induces sustainable changes in expression of genes and pathways important to vascular function.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE69688
Gene expression data from murine myeloid leukemia genomes induced by Sleeping Beauty transposon mutagenesis
  • organism-icon Mus musculus
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptome analysis of mRNA samples from a cohort of mice with histopathologically diagnosed Undifferentiated Myeloid Leukemia.

Publication Title

Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP058917
Transcriptome sequencing of murine myeloid leukemia genome
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Mus musculus (house mouse) Myeloid Leukemia RNA-Seq

Publication Title

Analyzing tumor heterogeneity and driver genes in single myeloid leukemia cells with SBCapSeq.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72672
Expression data from epidermal and dorsal root ganglion tissues of wild-type and mutant mice with mechanosensory deficit
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

A novel mouse line was found to exhibit prominent mechanosensory deficits both behaviorally and at the primary sensory afferents, and exhibits decreased ATP release from the skin.

Publication Title

Mechanosensory and ATP Release Deficits following Keratin14-Cre-Mediated TRPA1 Deletion Despite Absence of TRPA1 in Murine Keratinocytes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE75444
The histone variant H2A.X is a regulator of EpithelialMesenchymal Transition
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The epithelial-mesenchymal transition (EMT), considered essential for metastatic cancer, has been a focus of much research, but important questions remain. Here, we show that silencing or removing H2A.X, a histone H2A variant involved in cellular DNA repair and robust growth, induced mesenchymal-like characteristics including activation of EMT transcription factors, Slug and ZEB1, in HCT116 human colon cancer cells. Ectopic H2A.X re-expression partially reversed these changes; as did silencing Slug and ZEB1. In an experimental metastasis model, the HCT116 parental and H2A.X-null cells exhibited similar metastases levels, but the cells with re-expressed H2A.X exhibited substantially elevated levels. We surmise that H2A.X re-expression led to partial EMT reversal and increased robustness in the HCT116 cells, permitting them to both form tumors and to metastasize. In a human adenocarcinoma panel, H2A.X levels correlated inversely with Slug and ZEB1 levels. Together, these results point to H2A.X as a novel regulator of EMT.

Publication Title

The histone variant H2A.X is a regulator of the epithelial-mesenchymal transition.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE109304
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 16.1.0, HsEx10stv2_Hs_REFSEQ (huex10st), Affymetrix Multispecies miRNA-3 Array (mirna3)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE109302
Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 47 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [CDF: Brainarray Version 16.1.0, HsEx10stv2_Hs_REFSEQ (huex10st)

Description

mRNA expression profiling of untreated CDX samples and correlation with sensitivity data derived from treatments with BI 853520.

Publication Title

Efficacy of the highly selective focal adhesion kinase inhibitor BI 853520 in adenocarcinoma xenograft models is linked to a mesenchymal tumor phenotype.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact