refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 217 results
Sort by

Filters

Technology

Platform

accession-icon SRP047410
Transcription profile of BY4741 (Wild type) during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. Wild type cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047411
Transcription profile of ?phm3 strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?phm3 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047416
Transcription profile of pho90_OX strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. pho90_OX cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047418
Transcription profile of phm3 damp strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. phm3 damp cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047415
Transcription profile of ?vip1 strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?vip1 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP047413
Transcription profile of pho85 damp strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. pho85 damp cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 6 hours Overall design: 25 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE45285
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP047417
Transcription profile of ?phm4 strain during growth in no phosphate medium
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Depletion of essential nutrients triggers regulatory programs that prolong cell growth and survival. Starvation-induced processes increase nutrient transport, mobilize nutrient storage, and recycle nutrients between cellular components. This leads to an effective increase in intracellular nutrients, which may act as a negative feedback that down-regulates the starvation program. To examine how cells overcome this potential instability, we followed the transcription response of budding yeast transferred to medium lacking phosphate. Genes were induced in two temporal waves. The first wave was stably maintained and persisted even upon phosphate replenishment, indicating a positive feedback loop. This commitment was abolished after two hours with the induction of the second expression wave, coinciding with the reduction in cell growth rate. We identify genes that mediate this loss of commitment, and show that the overall temporal stability of the expression response depends on the sequential pattern of gene induction. Our results emphasize the key role of gene expression dynamics in optimizing cellular adaptation. ?phm4 cells were grown at high Phosphate medium, washed and transferred to no phosphate medium. Sample were taken every 15 minuets for 3.75 hours Overall design: 16 samples were taken during the time course. Expression data was normalized to the first time point (cells grown at high phosphate medium)

Publication Title

Sequential feedback induction stabilizes the phosphate starvation response in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE45269
Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery (BeadChip)
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Protein Arginine MethylTransferase 5 (PRMT5) is known to mediate epigenetic control on chromatin and to functionally regulate components of the splicing machinery. In this study we show that selective deletion of PRMT5 in different organs leads to cell cycle arrest and apoptosis. At the molecular level, PRMT5 depletion results in reduced methylation of Sm proteins, aberrant constitutive splicing and in the Alternative Splicing (AS) of specific mRNAs. We identify Mdm4 as one of these mRNAs, which due to its weak 5-Donor site, acts as a sensor of splicing defects and transduces the signal to activate the p53 response, providing a mechanistic explanation of the phenotype observed in PRMT5 conditional knockout mice. Our data demonstrate a key role of PRMT5, together with p53, as guardians of the transcriptome. This will have fundamental implications in our understanding of PRMT5 activity, both in physiological conditions, as well as pathological conditions, including cancer and neurological diseases.

Publication Title

Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE18803
Adult and Neonatal dorsal horn gene expression 7 day post sciatic nerve SNI injury
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

As rats do not develop neuropathic pain like hypersensitivity as neonates post nerve injury but do as adults we have used these arrays to help define the processes involved in this process.

Publication Title

T-cell infiltration and signaling in the adult dorsal spinal cord is a major contributor to neuropathic pain-like hypersensitivity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact