refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 54 results
Sort by

Filters

Technology

Platform

accession-icon GSE52892
SOX11-positive and SOX11-knockdown xenograft derived tumor Gene Expression Profilings
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL). We have recently demonstrated SOX11 tumorigenic potential in vivo by showing a significant reduction on tumor growth of SOX11-knockdown MCL cells in xenograft experiments, confirming the clinical observations that SOX11 may play an important role in the aggressive behavior of MCL (Vegliante et al., 2013). However, the specific mechanisms regulated by SOX11 that promote the oncogenic and rapid tumor growth of aggressive MCL still remain to be elucidated. To further characterize the potential oncogenic mechanisms regulated by SOX11 in MCL, we have analyzed the GEP derived from the xenograft SOX11-positive and knockdown xenograft derived tumors.

Publication Title

SOX11 promotes tumor angiogenesis through transcriptional regulation of PDGFA in mantle cell lymphoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP165929
RNA seq data of Hep3B-control, Hep3B-sertraline, Hep3B-XL413, Hep3B-XL413-sertraline, Huh7-control, Huh7-sertraline, Huh7-XL413, Huh7-XL413-sertraline cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Hep3B and Huh7 cells pre-treated with XL413 for 10 days to induce senescence prior to sertraline treatment for 24 hours. For RNA sequencing, the library was prepared using TruSeq RNA sample prep kit according to the manufacturer's protocol (Illumina). Gene set enrichment analysis was performed using gene set enrichment analysis software. Overall design: RNA seq data of Hep3B-control, Hep3B-sertraline, Hep3B-XL413, Hep3B-XL413-sertraline, Huh7-control, Huh7-sertraline, Huh7-XL413, Huh7-XL413-sertraline cells, to check gene expression signatures

Publication Title

Inducing and exploiting vulnerabilities for the treatment of liver cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP165928
CDC7 inhibition induces a senescence-like state in Hep3B and Huh7 cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Purpose: to check senescence gene expression signature in XL413 treated liver cancer cells. Methods: Hep3B and Huh7 cells are treated with XL413 for 4 days. For RNA sequencing, the library was prepared using TruSeq RNA sample prep kit according to the manufacturer's protocol (Illumina). Gene set enrichment analysis was performed using gene set enrichment analysis software. The FRIDMAN_SENESCENCE_UP gene set was used to assess the enrichment of senescence-associated genes in the XL413-treated versus control cells. Overall design: RNA seq data of Hep3B-control, Hep3B-XL413, Huh7-control, and Huh7-XL413 cells, to check senescence gene expression signature

Publication Title

Inducing and exploiting vulnerabilities for the treatment of liver cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE34763
SOX11 Gene Expression Profiling
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL), but its functional role in malignant B-cells is unknown. To identify target genes transcriptionally regulated by SOX11 in malignant lymphoid cells, we have used Gene Expression Profiling (GEP) after SOX11 silencing in MCL cell lines.

Publication Title

SOX11 regulates PAX5 expression and blocks terminal B-cell differentiation in aggressive mantle cell lymphoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE15041
Postnatal developmental changes in Sprague-Dawley rats in the model of neuropathic pain 'spare nerve injury'
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Neuropathic pain is an apparently spontaneous experience triggered by abnormal physiology of the peripheral or central nervous system, which evolves with time. Neuropathic pain arising from peripheral nerve injury is characterized by a combination of spontaneous pain, hyperalgesia and allodynia. There is no evidence of this type of pain in human infants or rat pups; brachial plexus avulsion, which causes intense neuropathic pain in adults, is not painful when the injury is sustained at birth. Since infants are capable of nociception from before birth and display both acute and chronic inflammatory pain behaviour from an early neonatal age, it appears that the mechanisms underlying neuropathic pain are differentially regulated over a prolonged postnatal period.

Publication Title

Differential regulation of immune responses and macrophage/neuron interactions in the dorsal root ganglion in young and adult rats following nerve injury.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE31660
Gene expression associated with compatible viral diseases in berry
  • organism-icon Vitis vinifera
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Vitis vinifera (Grape) Genome Array (vitisvinifera)

Description

To understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development (veraison and ripening) in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process.

Publication Title

Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE47092
Effects of bacterium Burkholderia phytofirmans PsJN in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Plant growth promoting rhizobacteria (PGPR) induce positive effects in plants, such as increased growth or reduced stress susceptibility. The mechanisms behind PGPR/plant interaction are poorly understood, as most studies have described short- term responses on plants and only a few studies have analyzed plant molecular responses under PGPR colonization.

Publication Title

Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE32659
Expression data from arabidopsis root in response to boron toxicity
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Boron is an essential micronutrient for plants and is taken up in the form of boric acid (BA). Despite this, a high BA concentration is toxic for the plants, inhibiting root growth and is thus a significant problem in semi-arid areas in the world. In this work, we report the molecular basis for the inhibition of root growth caused by boron. We used microarrays to detail the global gene expression underlying boron toxicity in roots.

Publication Title

A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE36000
Mantle Cell Lymphoma
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression analyis of primary MCL including IGHV mutated and unmutated cases

Publication Title

Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE27982
Genetic and pharmacologic approach to identify genes regulated by mTORC1
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Mammalian target of rapamycin (mTOR) complex 1 (mTORC1) is a critical regulator of cell growth by integrating multiple signals (nutrients, growth factors, energy and stress) and is frequently deregulated in many types of cancer. We used a robust experimental paradigm involving the combination of two interventions, one genetic and one pharmacologic to identify genes regulated transcriptionally by mTORC1. In Tsc2+/+, but not Tsc2-/- immortalized mouse embryo fibroblasts (MEFs), serum deprivation downregulates mTORC1 activity. In Tsc2-/- cells, abnormal mTORC1 activity can be downregulated by treatment with rapamycin (sirolimus). By contrast, rapamycin has little effect on mTORC1 in Tsc2+/+ cells in which mTORC1 is already inhibited by low serum. Thus, under serum deprived conditions, mTORC1 activity is low in Tsc2+/+ cells (untreated or rapamycin treated), high in Tsc2-/- cells, but lowered by rapamycin; a pattern referred to as a low/low/high/low or LLHL, which allowed the identification of genes regulated by mTORC1 by performing the appropriate comparisons

Publication Title

Regulation of TFEB and V-ATPases by mTORC1.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact