refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 150 results
Sort by

Filters

Technology

Platform

accession-icon SRP076488
RNA-seq analyses of ID4-EGFP+ undifferentiated spermatogonia and sorted subpopulations.
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

P6 ID4-EGFP+ undifferentiated spermatogonia, including those stained robustly (high) or weakly (low) for TSPAN8 were isolated by FACS. Overall design: Three replicate preparations of each population were used for independent RNA-seq using SMART-seq v4, Nextera XT libraries, Hiseq2500 sequencing, and TopHat/Bowtie/Cufflinks analyses.

Publication Title

TSPAN8 Expression Distinguishes Spermatogonial Stem Cells in the Prepubertal Mouse Testis.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE10695
Gene expression profiling of liver from dairy cows subjected to intra-mammary LPS treatment: time course
  • organism-icon Bos taurus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Liver plays a profound role in the acute phase response (APR) observed in the early phase of acute bovine mastitis caused by Escherichia coli (E. coli). To gain an insight into the genes and pathways involved in hepatic APR of dairy cows we performed a global gene expression analysis of liver tissue sampled at different time points before and after intra-mammary (IM) exposure to E. coli lipopolysaccharide (LPS) treatment.

Publication Title

Gene expression profiling of liver from dairy cows treated intra-mammary with lipopolysaccharide.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP072468
RNA-seq analysis of testis transcripts from Wt and Trf2-/- mice [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

TRF2 is a paralogue of TATA-box binding protein (TBP) with highest expression in testis. Although Trf2 inactivation in mice leads to arrested spermatogenesis, there is no direct evidence that Trf2 is recruited to chromatin to directly regulate gene expression. We used genetically modified mice where endogenous Trf2 has been modified to carry a TAP-TAG to perform ChIP-reChIP followed by deep sequencing. We found that Trf2 is recruited to all active promoters as a subunit of TFIIA/ALF complex together with TBP. To assess the effect of Trf2 inactivation on gene expression we performed RNA-seq on WT and Trf2-/- testes at 21 days of age when haploid cell gene expression is activated. Overall design: The testes from three 21 day old WT and three Trf2-/- males were taken to prepare total RNAs for deep sequencing.

Publication Title

TRF2 is recruited to the pre-initiation complex as a testis-specific subunit of TFIIA/ALF to promote haploid cell gene expression.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE60099
Intronic polyadenylation of PDGFR in resident stem cells attenuates muscle fibrosis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The platelet-derived growth factor receptor alpha (PDGFR) exhibits divergent effects in skeletal muscle. At physiological levels, signaling through this receptor promotes muscle development in growing embryos and proper angiogenesis in regenerating adult muscle. However, either increased PDGF ligands or enhanced PDGFR pathway activity causes pathological fibrosis. This excessive collagen deposition, which is seen in aged and diseased muscle, interferes with proper muscle function and limits the effectiveness of gene- and cell-based therapies for muscle disorders. Although compelling evidence exists for the role of PDGFR in fibrosis, little is known about the cells through which this pathway acts. Here we show that PDGFR signaling regulates a population of muscle-resident fibro/adipogenic progenitors (FAPs) that play a supportive role in muscle regeneration but may also cause fibrosis when aberrantly regulated. We found that FAPs produce multiple transcriptional variants of PDGFR with different polyadenylation sites, including an intronic variant that codes for a protein isoform containing a truncated kinase domain. This variant, upregulated during regeneration, acts as a decoy to inhibit PDGF signaling and to prevent FAP over-activation. Moreover, increasing expression of this isoform limits fibrosis in vivo, suggesting both biological relevance and therapeutic potential of modulating polyadenylation patterns in stem cell populations.

Publication Title

Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP021911
Small RNA sequencing of human preovulatory cumulus and mural granulosa cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer IIx

Description

The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. However, the post-transcriptional gene expression studies on miRNA level in the human ovary have been scarce. The current study determined the miRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Overall design: Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Libraries of all 6 samples were sequenced twice, generating 2 technical replicates for each sample. Differential gene expression study was performed on the pooled results of technical replicates.

Publication Title

Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE81744
Intronic polyadenylation of PDGFR in stromal stem cells attenuates muscle fibrosis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The platelet-derived growth factor receptor alpha (PDGFR) exhibits divergent effects in skeletal muscle. At physiological levels, signaling through this receptor promotes muscle development in growing embryos and proper angiogenesis in regenerating adult muscle. However, either increased PDGF ligands or enhanced PDGFR pathway activity causes pathological fibrosis. This excessive collagen deposition, which is seen in aged and diseased muscle, interferes with proper muscle function and limits the effectiveness of gene- and cell-based therapies for muscle disorders. Although compelling evidence exists for the role of PDGFR in fibrosis, little is known about the cells through which this pathway acts. Here we show that PDGFR signaling regulates a population of muscle-resident fibro/adipogenic progenitors (FAPs) that play a supportive role in muscle regeneration but may also cause fibrosis when aberrantly regulated. We found that FAPs produce multiple transcriptional variants of PDGFR with different polyadenylation sites, including an intronic variant that codes for a protein isoform containing a truncated kinase domain. This variant, upregulated during regeneration, acts as a decoy to inhibit PDGF signaling and to prevent FAP over-activation. Moreover, increasing expression of this isoform limits fibrosis in vivo, suggesting both biological relevance and therapeutic potential of modulating polyadenylation patterns in stem cell populations.

Publication Title

Intronic polyadenylation of PDGFRα in resident stem cells attenuates muscle fibrosis.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon SRP021912
High-throughput RNA sequencing of human preovulatory cumulus and mural granulosa cells (mRNA)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The granulosa cells in the mammalian ovarian follicle respond to gonadotropin signalling and are involved in the processes of folliculogenesis and oocyte maturation. Studies on gene expression and regulation in human granulosa cells are of interest due to their potential for estimating the oocyte viability and IVF success. The current study determined the mRNA profile by deep sequencing of the two intrafollicular somatic cell types: mural and cumulus granulosa cells isolated from women undergoing controlled ovarian stimulation and in vitro fertilization. Overall design: Paired cumulus and mural granulosa samples were analysed from 3 women participating in IVF procedure. Differential gene expression study was performed. The identified gene expression profile was also used for predicting targets for miRNAs that were also identified from the same samples (GSE46489).

Publication Title

Research resource: small RNA-seq of human granulosa cells reveals miRNAs in FSHR and aromatase genes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP128610
C1 single-cell RNA-seq of Adult Human spermatoognia
  • organism-icon Homo sapiens
  • sample-icon 635 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To reveal distinct transcriptomes associated with spermatogonial stem cell renewal vs. initiation of differentiation, single-cell transcriptomes from Adult Human spermatogonia were subdivided into subpopulations based on the levels of ID4 mRNA (determined in this experiment). This correlates with distinct fates of corresponding mouse spermatogonia when assayed by transplantation, with ID4-EGFPbright cells highly enriched for SSCs, and ID4-EGFPdim cells enriched for progenitors. We used the Fluidigm C1 instrument to capture individual spermatogonia for SMART-Seq2 single-cell RNA-seq. Overall design: Nine replicate preparations of Adult Human spermatogonia were used for this study. Data are from a total of 635 cells. Cells were binned into quartiles according to ID4 mRNA levels (Q1 = ID4-high, Q4=ID4-low, Q2 and Q3 have intermediate ID4 mRNA levels) to facilitate comparisons.

Publication Title

The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP128582
C1 single-cell RNA-seq of Adult ID4-EGFP mouse spermatoognia
  • organism-icon Mus musculus
  • sample-icon 290 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To reveal distinct transcriptomes associated with spermatogonial stem cell renewal vs. initiation of differentiation, single-cell transcriptomes from Adult ID4-EGFP+ spermatogonia were subdivided into subpopulations that displayed distinct fates when assayed by transplantation, with ID4-EGFPbright cells highly enriched for SSCs, and ID4-EGFPdim cells enriched for progenitors. We used the Fluidigm C1 instrument to capture individual spermatogonia for SMART-Seq2 single-cell RNA-seq. Overall design: Four replicate preparations of Adult mouse ID4-EGFP+ spermatogonia were used for this study. Data are from a total of 300 cells. Cells were binned into quartiles according to EGFP epifluorescence intensity (Q1 = EGFP-bright, Q4=EGFP-dim, Q2 and Q3 have intermediate EGFP fluorescence) to facilitate comparisons.

Publication Title

The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP128577
C1 single-cell RNA-seq of immature (P6) ID4-EGFP mouse spermatoognia
  • organism-icon Mus musculus
  • sample-icon 249 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

To reveal distinct transcriptomes associated with spermatogonial stem cell renewal vs. initiation of differentiation, single-cell transcriptomes from P6 ID4-EGFP+ spermatogonia were subdivided into subpopulations that displayed distinct fates when assayed by transplantation, with ID4-EGFPbright cells highly enriched for SSCs, and ID4-EGFPdim cells enriched for progenitors. We used the Fluidigm C1 instrument to capture individual spermatogonia for SMART-Seq2 single-cell RNA-seq. Overall design: Five replicate preparations of mouse P6 ID4-EGFP+ spermatogonia were used for this study. Data are from a total of 278 cells. Cells were binned into quartiles according to EGFP epifluorescence intensity (Q1 = EGFP-bright, Q4=EGFP-dim, Q2 and Q3 have intermediate EGFP fluorescence) to facilitate comparisons.

Publication Title

The Mammalian Spermatogenesis Single-Cell Transcriptome, from Spermatogonial Stem Cells to Spermatids.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact