refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 590 results
Sort by

Filters

Technology

Platform

accession-icon GSE42762
FOXO3a Is A Major Target Of Inactivation By PI3K/AKT Signaling In Aggressive Neuroblastoma
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with a highly variable prognosis. Activation of the PI3K/AKT pathway in neuroblastoma is correlated with poor patient prognosis, but the precise downstream effectors mediating this effect have not been determined. Here, we identify the forkhead transcription factor FOXO3a as a key target of the PI3K/AKT pathway in neuroblastoma. FOXO3a expression was elevated in low stage neuroblastoma tumors and normal embryonal neuroblasts, but reduced in late stage neuroblastoma. Inactivation of FOXO3a by AKT was essential for neuroblastoma cell survival. Treatment of neuroblastoma cells with the dual PI3K/mTOR inhibitor PI-103 activated FOXO3a and triggered apoptosis. This effect was rescued by FOXO3a silencing. Conversely, apoptosis induced by PI-103 or the AKT inhibitor MK-2206 was potentiated by FOXO3a overexpression. Further, levels of total or phosphorylated FOXO3a correlated closely with apoptotic sensitivity to MK-2206. In clinical specimens, there was an inverse relationship between gene expression signatures regulated by PI3K signaling and FOXO3a transcriptional activity. Moreover, high PI3K activity and low FOXO3a activity were each associated with an extremely poor prognosis. Our work indicates that expression of FOXO3a and its targets offer useful prognostic markers as well as biomarkers for PI3K/AKT inhibitor efficacy in neuroblastoma.

Publication Title

FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE22875
OTX2 drives medulloblastoma proliferation via direct regulation of cell cycle genes and inhibits differentiation
  • organism-icon Homo sapiens
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The transcription factor OTX2 has been implicated as an oncogene in medulloblastoma, which is the most common malignant brain tumor in children. It is highly expressed in most medulloblastomas and amplified in a subset of them. The role of OTX2 in medulloblastoma and its downstream targets are unclear. Therefore, we generated D425 medulloblastoma cells in which we can silence endogenous OTX2 by inducible shRNA. Silencing of OTX2 strongly inhibited cell proliferation and resulted in a neuronal-like differentiation. Expression profiling of time courses after silencing showed a progressive change in gene expression for many cellular processes. Down regulated genes were highly enriched for cell cycle and visual perception genes, while up regulated genes were enriched for genes involved in development and differentiation. This shift in expression profiles is reminiscent to changes described to occur during normal cerebellum development. OTX2 is expressed in proliferating granular progenitor cells, but the expression diminishes when these cells exit the cell cycle and start differentiating. ChIP-on-chip analyses of OTX2 in D425 cells showed that cell cycle and perception genes were direct OTX2 targets, while regulation of most differentiation genes appears to be indirect. These analyses provide the first insight in the molecular network of OTX2, demonstrating that OTX2 is essential in medulloblastoma and directly drives proliferation by regulating the expression of cell cycle genes. Since many of these genes also correlate in expression with OTX2 in primary tumors, they might be potential targets for therapy in medulloblastoma patients.

Publication Title

OTX2 directly activates cell cycle genes and inhibits differentiation in medulloblastoma cells.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE8066
Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell proliferation
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Neuroblastomas are tumors of the developing peripheral sympathetic nervous system, which originates from the neural crest. Twenty percent of neuroblastomas show amplification of the MYCN oncogene, which correlates with poor prognosis. The MYCN transcription factor can activate and repress gene expression. To broaden our insight in the spectrum of genes down-regulated by MYCN, we generated gene expression profiles of the neuroblastoma cell lines SHEP-21N and SKNAS-NmycER, in which MYCN activity can be regulated. In this study, we show that MYCN suppresses the expression of Dickkopf-1 (DKK1) in both cell lines. DKK1 is a potent inhibitor of the wnt/beta-catenin signalling cascade, which is known to function in neural crest cell migration. We generated a DKK1 inducible cell line, IMR32-DKK1, which showed impaired proliferation upon DKK1 expression. Surprisingly, DKK1 expression did not inhibit the canonical wnt/beta-catenin signalling, suggesting a role of DKK1 in an alternative route of the wnt pathway. Gene expression profiling of two IMR32-DKK1 clones showed that only a few genes, amongst which SYNPO2, were up-regulated by DKK1. SYNPO2 encodes an actin-binding protein and was previously found to inhibit proliferation and invasiveness of prostate cancer cells. These results suggest that MYCN might stimulate cell proliferation by inhibiting the expression of DKK1. DKK1 might exert part of its growth suppressive effect by induction of SYNPO2 expression.

Publication Title

Dickkopf-1 is down-regulated by MYCN and inhibits neuroblastoma cell proliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE17714
11 Neuroblastoma cell lines under normoxic and hypoxic conditions
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hypoxia is a low oxygen condition that occurs in the developing tumor mass and that is associated with poor prognosis and resistance to chemo- and radio-therapy. The definition of the hypoxia gene signature is fundamental for the understanding of tumor biology, as in the case of neuroblastoma, the most common pediatric solid tumor. The issue of identifying a significant group of variables in microarray gene expression experiments is particularly difficult due to the typical high dimensional nature of the data and great effort has been spent in the development of feature selection techniques.

Publication Title

A biology-driven approach identifies the hypoxia gene signature as a predictor of the outcome of neuroblastoma patients.

Sample Metadata Fields

Cell line

View Samples
accession-icon E-TABM-105
Transcription profiling by array of zebrafish liver after treatment with 17 alpha-ethynylestradiol
  • organism-icon Danio rerio
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

Genomic, proteomic, and metabolomic technologies continue to receive increasing interest from environmental toxicologists. This interest is due to the great potential of these technologies to identify detailed modes of action and to provide assistance in the evaluation of a contaminant’s risk to aquatic organisms. Our experimental model is the zebrafish (Danio rerio) exposed to reference endocrine disrupting compounds in order to investigate compound-induced changes in gene transcript profiles. Adult, female zebrafish were exposed to 0, 15, 40, and 100 ng/L of 17 alpha-ethynylestradiol (EE2) and concentration and time-dependent changes in hepatic gene expression were examined using Affymetrix GeneChip® Zebrafish Genome Microarrays. At 24, 48, and 168 hours, fish were sacrificed and liver mRNA was extracted for gene expression analysis (24 and 168 hours only). In an effort to link gene expression changes to effects on higher levels of biological organization, body and ovary weights were measured and blood was collected for measurement of plasma steroid hormones (17 beta-estradiol (E2), testosterone (T)) and vitellogenin (VTG) using ELISA. EE2 exposure significantly affected GSI, E2, T, VTG and gene expression. We observed 1575 genes that were significantly affected (up- or down-regulated by at least 1.5-fold (p ? 0.001) in a concentration-dependent manner by EE2 exposure at either 24 or 168 hours. EE2 exposure altered transcription of genes involved in steroid hormone homeostasis, cholesterol homeostasis, retinoic acid metabolism, and cell growth and proliferation. Plasma VTG was significantly increased at 24, 48, and 168 hours (p<0.05) at 40 and 100 ng/L and at 15 ng/L at 168 hours. E2 and T were significantly reduced following EE2 exposure at 48 and 168 hours. GSI was decreased in a dose-dependent manner at 168 hours. In this study, we identified genes involved in a variety of biological functions that have the potential to be used as markers of exposure to estrogenic substances. Future work will evaluate the use of these genes in zebrafish exposed to weak estrogens to determine if these genes are indicative of exposure to estrogens with varying potencies.

Publication Title

Hepatic gene expression profiling using Genechips in zebrafish exposed to 17alpha-ethynylestradiol.

Sample Metadata Fields

Sex, Specimen part, Compound, Time

View Samples
accession-icon GSE87437
Gene expression data of primary Osteosarcomas
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Affymetrix gene expression data of 21 high-grade osteosarcomas located in the extremities.This gene expression profiling was performed in order to evaluate the expression of candidate prognostic and therapeutic targets in high-grade osteosarcoma.

Publication Title

Targeting CDKs with Roscovitine Increases Sensitivity to DNA Damaging Drugs of Human Osteosarcoma Cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE16254
Integrated bioinformatic and wet-lab approach to identify potential oncogenic networks in neuroblastoma and other tumors
  • organism-icon Homo sapiens
  • sample-icon 161 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A NOTCH3 transcriptional module induces cell motility in neuroblastoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE16477
NOTCH3 is a master-regulator of motility in neuroblastoma and is essential for cell survival
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Migratory embryonal neuroblasts give rise to several tissues, including the sympathetic nervous system (SNS). Neuroblastomas are paediatric tumours of the peripheral SNS with a highly variable prognosis. We observed that high NOTCH3 expression in neuroblastomas correlated with a poor prognosis. Expression of a NOTCH3 transgene in neuroblastoma cells induced many motility genes and conferred a highly motile phenotype. Expression of these motility genes strongly correlated with NOTCH3 expression in neuroblastomas and many other tumours, suggesting a general role for NOTCH3 in regulation of these genes. Silencing of NOTCH3 or genes of the Notch-processing -secretase complex induced apoptosis in all neuroblastoma cell lines tested. These data suggest that NOTCH3 is a key-regulator of motility, and indispensable for survival of neuroblastoma cells.

Publication Title

A NOTCH3 transcriptional module induces cell motility in neuroblastoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE16480
Inactivation of CDK2 is synthetic lethal to MYCN-overexpressing cancer cells
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Two genes have a synthetic lethal relationship when silencing or inhibition of one gene is only lethal in the context of a mutation or activation of the second gene. This situation offers an attractive therapeutic strategy, as inhibition of such a gene will only trigger cell death in tumor cells with an activated second oncogene but spare normal cells without activation of the second oncogene. Here we present evidence that CDK2 is synthetic lethal to neuroblastoma cells with MYCN amplification and overexpression. Neuroblastomas are childhood tumors with an often lethal outcome. Twenty percent of the tumors have MYCN amplification and these tumors are ultimately refractory to any therapy. Targeted silencing of CDK2 by three RNA interference techniques induced apoptosis in MYCN-amplified neuroblastoma cell lines, but not in MYCN single copy cells. Silencing of MYCN abrogated this apoptotic response in MYCN-amplified cells. Inversely, silencing of CDK2 in MYCN single copy cells did not trigger apoptosis, unless a MYCN transgene was activated. The MYCN induced apoptosis after CDK2 silencing was accompanied by nuclear stabilization of P53 and mRNA profiling showed up-regulation of P53 target genes. Silencing of P53 rescued the cells from MYCN-driven apoptosis. The synthetic lethality of CDK2 silencing in MYCN activated neuroblastoma cells can also be triggered by inhibition of CDK2 with a small molecule drug. Treatment of neuroblastoma cells with Roscovitine, a CDK inhibitor, at clinically achievable concentrations induced MYCN-dependent apoptosis. The synthetic lethal relation between CDK2 and MYCN indicates CDK2 inhibitors as potential MYCN-selective cancer therapeutics.

Publication Title

Inactivation of CDK2 is synthetically lethal to MYCN over-expressing cancer cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE8866
The undifferentiated phenotype in neuroblastoma depends on Cyclin D1 and CDK4 activity
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Genomic aberrations of Cyclin D1 (CCND1) and CDK4 in neuroblastoma indicate that dysregulation of the G1 entry checkpoint is an important cell cycle aberration in this pediatric tumor. Here we report that analysis of Affymetrix expression data of primary neuroblastic tumors shows an extensive over-expression of Cyclin D1 and CDK4 which correlates with histological subgroups and prognosis respectively. Immunohistochemical analysis demonstrated an over-expression of Cyclin D1 in neuroblasts and a low Cyclin D1 expression in all cell types in ganglioneuroma. This suggests an involvement of G1 regulating genes in neuronal differentiation processes which we further evaluated using RNA interference against Cyclin D1 and its kinase partner CDK4 in several neuroblastoma cell lines. This resulted in pRb pathway inhibition as shown by an almost complete disappearance of CDK4 specific pRb phosphorylation; reduction of E2F transcriptional activity and a decrease of Cyclin A protein levels. The Cyclin D1 and CDK4 knock-down resulted in a significant reduction in cell proliferation, a G1 specific cell cycle arrest and moreover an extensive neuronal differentiation. Affymetrix microarray profiling of siRNA treated cells revealed a shift in expression profile towards a neuronal phenotype. Several new potential downstream players are identified. We conclude that neuroblastoma functionally depend on over-expression of G1 regulating genes to maintain their undifferentiated phenotype.

Publication Title

Cyclin D1 and CDK4 activity contribute to the undifferentiated phenotype in neuroblastoma.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact