refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 590 results
Sort by

Filters

Technology

Platform

accession-icon GSE66488
Characterization of tumor extracellular vesicle RNA cargo
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Comparative RNA profiling between tumor cells and their secreted extracellular vesicles. Results revealed enrichment in genes involved in cellular migration and metastasis in extracellular vesicles, in agreement with their role as mediators of tumor progression.

Publication Title

In Vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP170629
RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Background and Purpose—Analyzing genes involved in development and rupture of intracranial aneurysms can enhance knowledge about the pathogenesis of aneurysms, and identify new treatment strategies. We compared gene expression between ruptured and unruptured aneurysms and control intracranial arteries. Methods—We determined expression levels with RNA sequencing. Applying a multivariate negative binomial model, we identified genes that were differentially expressed between 44 aneurysms and 16 control arteries, and between 22 ruptured and 21 unruptured aneurysms. The differential expression of 8 relevant and highly significant genes was validated using digital polymerase chain reaction. Pathway analysis was used to identify enriched pathways. We also analyzed genes with an extreme pattern of differential expression: only expressed in 1 condition without any expression in the other. Results—We found 229 differentially expressed genes in aneurysms versus controls and 1489 in ruptured versus unruptured aneurysms. The differential expression of all 8 genes selected for digital polymerase chain reaction validation was confirmed. Extracellular matrix pathways were enriched in aneurysms versus controls, whereas pathways involved in immune response and the lysosome pathway were enriched in ruptured versus unruptured aneurysms. Immunoglobulin genes were expressed in aneurysms, but showed no expression in controls. Conclusions—For rupture of intracranial aneurysms, we identified the lysosome pathway as a new pathway and found further evidence for the role of the immune response. Our results also point toward a role for immunoglobulins in the pathogenesis of aneurysms. Immune-modifying drugs are, therefore, interesting candidate treatment strategies in the prevention of aneurysm development and rupture. Overall design: RNA sequencing of 44 intracranial aneurysm samples (including 21 unruptured, 22 ruptured and 1 undetermined) and 16 control samples of the intracranial cortical artery

Publication Title

RNA Sequencing Analysis of Intracranial Aneurysm Walls Reveals Involvement of Lysosomes and Immunoglobulins in Rupture.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE42245
The impact of cell source, culture methodology, culture location and individual donors on gene expression profiles of bone marrow-derived and adipose-derived stromal cells.
  • organism-icon Homo sapiens
  • sample-icon 60 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Gene expression was influenced most by the tissue source, followed by culture methodology, next by location where the cells were cultured and lastly the donor variability.

Publication Title

The impact of cell source, culture methodology, culture location, and individual donors on gene expression profiles of bone marrow-derived and adipose-derived stromal cells.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE54330
Interleukin-6 is a Potential Therapeutic Target in Interleukin-6 Dependent Estrogen Receptor-alpha Positive Breast Cancer [patient tumor tissue]
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Affymetrix Human Gene 1.1 ST Array (hugene11st)

Description

Interleukin-6 (IL-6) is an important growth factor for estrogen receptor-alpha (ER) positive breast cancer, and elevated serum IL-6 is associated with poor prognosis. We firstly demonstrated that pSTAT3 is the primary downstream IL-6 signaling pathway in ER-positive breast cancer, using ten different breast cancer cell lines. Three-dimensional cultures of these cell lines were also used to develop a 17-gene IL-6 specific gene signature that could be used to identify IL-6 driven disease. This signature included a variety of genes involved in immune cell function and migration, cell growth and apoptosis, and the tumor microenvironment. To further validate this IL-6 signature, we obtained 36 human ER-positive breast cancer tumor samples with matched serum for gene expression profiling and determination of an IL-6 pathway activation score (PAS). Patients with high IL-6 PAS were also enriched for elevated serum IL-6 (>=10 pg/ml). We then utilized a murine MCF-7 xenograft model to determine the role of IL-6 in ER-positive breast cancer and potential anti-IL-6 therapy in vivo. When IL-6 was administered in vivo, MCF-7 cells engrafted without the need for estrogen supplementation. Subsequently, we prophylactically treated mice at MCF-7 engraftment with an anti-IL-6 antibody (siltuximab), fulvestrant or combination therapy. Siltuximab alone was able to blunt MCF-7 engraftment. Similarly, when tumors were allowed to grow to 125 mm3 before treatment, siltuximab alone demonstrated tumor regressions in 90% (9/10) of tumors. Given the established role for IL-6 in ER+ breast cancer, this data demonstrates the potential for anti-IL-6 therapeutics.

Publication Title

Interleukin-6 is a potential therapeutic target in interleukin-6 dependent, estrogen receptor-α-positive breast cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62918
Expression data from Escherichia coli strains with increased or decreased levels of Obg (ObgE, CgtA, YhbZ)
  • organism-icon Escherichia coli
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

We measured transcriptional changes resulting from overexpression or downregulation of the GTPase Obg.

Publication Title

Obg and Membrane Depolarization Are Part of a Microbial Bet-Hedging Strategy that Leads to Antibiotic Tolerance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP151306
Transition between fermentation and respiration determines history-dependent behavior in fluctuating carbon sources
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 50 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Transcriptome of S. cerevisiae in shifts between glucose and maltose media with different re-growth conditions Overall design: Cells are pregrown in maltose, then grown for different durations in glucose and then washed back to maltose

Publication Title

A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE10581
Nrf2-related oxidative stress response and impaired dopamine biosynthesis in a PC12 cell model of Huntingtons disease
  • organism-icon Rattus norvegicus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Huntingtons disease (HD) is a devastating disease for which currently no therapy is available. It is a progressive autosomal dominant neurodegenerative disorder that is caused by a CAG repeat expansion in the HD gene, resulting in an expansion of polyglutamines at the N-terminal end of the encoded protein, designated huntingtin, and the accumulation of cytoplasmic and nuclear aggregates. Not only is there a loss of normal huntingtin function, upon expansion of the CAG repeat there is also a gain of toxic function of the huntingtin protein and this affects a wide range of cellular processes. To identify groups of genes that could play a role in the pathology of Huntingtons disease, we studied mRNA changes in an inducible PC12 model of Huntingtons disease before and after aggregates became visible. This is the first study to show the involvement Nrf2-responsive genes in the oxidative stress response in HD. Oxidative stress related transcripts were altered in expression suggesting a protective response in cells expressing mutant huntingtin at an early stage of cellular pathology. Furthermore, there was a down-regulation of catecholamine biosynthesis resulting in lower dopamine levels in culture. Our results further demonstrate an early impairment of transcription, the cytoskeleton, ion channels and receptors. Given the pathogenic impact of oxidative stress and neuroinflammation, the Nrf2-ARE signaling pathway is an attractive therapeutic target for neurodegenerative diseases.

Publication Title

Mutant huntingtin activates Nrf2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington's disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8451
Transcriptional profiling of carotenoid producing S. cerevisiae cells
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

To obtain insight in the genome-wide response of heterologous carotenoid production in Saccharomyces cerevisiae, we have analyzed the transcriptome of S. cerevisiae strains overexpressing carotenogenic genes from the yeast Xanthophyllomyces dendrorhous. For this purpose, two strains producing different levels of carotenoids were grown in carbon-limited continuous cultures and genome-wide expression was analyzed. The strain producing low carotenoid levels did not exhibit a clear genome-wide transcriptional response, suggesting that low carotenoid levels do not result in cellular stress. Transcriptome analysis of a strain producing high carotenoid levels resulted in specific induction of genes involved in pleiotropic drug resistance (PDR). These genes encode ATP-binding cassette (ABC) type transporters and major facilitator transporters which are involved in secretion of toxic compounds out of cells. Our results suggest that production of high amounts of carotenoids in S. cerevisiae lead to toxicity and that these cells are prone to secrete carotenoids out of the cell. Indeed, secretion of beta-carotene into sunflower oil was observed upon addition of this hydrophobic solvent to the growth medium. Finally, it was observed that deletion of the ABC transporter pdr10, one of the induced PDR transporters, highly decreased the transformation efficiency of an episomal vector containing carotenogenic genes. The few colored transformants that were obtained had decreased growth rates and lower carotenoid production levels compared to control strains transformed with the same carotenogenic genes. These results indicate that Pdr10 might be specifically involved in carotenoid tolerance in S. cerevisiae strains.

Publication Title

Heterologous carotenoid production in Saccharomyces cerevisiae induces the pleiotropic drug resistance stress response.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52819
Vitamin D treatment of M.tb. infected macrophages
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

As macrophages are the primary site of Mtb infection and are sites of vitamin D signaling, we have used these cells to understand the molecular mechanisms underlying modulation of the immune response by the hormonal form of vitamin D, 1,25-dihydroxyvitamin D (1,25D).

Publication Title

Vitamin D induces interleukin-1β expression: paracrine macrophage epithelial signaling controls M. tuberculosis infection.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP123625
Translatome analysis of the ribosomal protein L10 R98S mutation reveals altered serine metabolism in acute lymphoblastic leukemia [supplementaryRNA-seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Somatic ribosomal protein defects have recently been described in cancer, yet their impact on cellular transcription and translation remain poorly understood. Here we integrated mRNA sequencing, ribosome footprinting, polysomal RNA seq and quantitative mass spectrometry datasets obtained from an isogenic mouse lymphoid cell model in order to study the T-cell acute lymphoblastic leukemia (T-ALL) associated R98S mutation in ribosomal protein L10 (RPL10 R98S). RPL10 R98S induced changes in protein levels were to a much larger extent caused by transcriptional then translational changes and RPL10 R98S cells showed a gene signature corresponding to deregulation of hematopoietic transcription factors. Phosphoserine phosphatase (PSPH), a key enzyme in serine biosynthesis, displayed elevated transcription and translation and was one of the proteins showing the strongest upregulation in RPL10 R98S cells. Increased Psph protein levels were confirmed in RPL10 R98S engineered JURKAT cells and in hematopoietic cell cultures derived from Rpl10 R98S knock-in mice. Moreover, elevated serine and glycine biosynthesis in RPL10 R98S cells was supported by metabolic flux analyses. Analysis of PSPH expression levels in T-ALL patient samples revealed that PSPH upregulation is a generalized phenomenon in this disease, associated with elevated circulating serine and glycine levels. Addition of serine and glycine enhanced survival of stromal and myeloid cells, suggesting supportive effects on the hematopoietic niche. Finally, reduction of PSPH expression levels in T-ALL cell lines suppressed their in vitro proliferation and their capacity to expand in T-ALL xenograft models. In conclusion, transcriptome, translatome and proteome analysis of the RPL10 R98S mutation identified RPL10 R98S driven induction of cellular serine biosynthesis. Whereas serine metabolism has been implicated in cancer via PHGDH amplification, this is the first report supporting dependence of ALL cells on the serine biosynthesis enzyme PSPH. Overall design: 3 biological replicates for each condition (RPL10 R98S, RPL10 WT)

Publication Title

Translatome analysis reveals altered serine and glycine metabolism in T-cell acute lymphoblastic leukemia cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact