refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE18946
Apoptosis regulation by Kaposis sarcoma microRNAs
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Herpesviruses are known to encode micro (mi)RNAs and to use them to regulate the expression of both viral and cellular genes. The genome of Kaposis sarcoma herpesvirus (KSHV) encodes a cluster of twelve miRNAs, which are abundantly expressed during both latency and lytic infection. Relatively few cellular targets of KSHV miRNAs are known. Here, we used a microarray expression profiling approach to analyze the transcriptome of both B lymphocytes and endothelial cells stably expressing KSHV miRNAs and monitor the changes induced by the presence of these miRNAs. We generated a list of potential cellular targets by looking for miRNA seed-match-containing transcripts that were significantly down regulated upon KSHV miRNAs expression. Interestingly, the overlap of putative targets identified in B lymphocytes and endothelial cells was minimal, suggesting a tissue-specific target-regulation by viral miRNAs. Among the putative targets, we identified caspase 3, a critical factor for the control of apoptosis, which we validated using luciferase reporter assays and western blotting. In functional assays we obtained further evidence that KSHV miRNAs indeed protect cells from apoptosis.

Publication Title

Kaposi's sarcoma herpesvirus microRNAs target caspase 3 and regulate apoptosis.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP093754
A label-retaining but unipotent cell population resides in biliary compartment of mammalian liver.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Cells with slow proliferation kinetics that retain the nuclear label over long time periods – the label-retaining cells (LRCs) – represent multipotent stem cells in a number of adult tissues. Since the identity of liver LRCs (LLRCs) had remained elusive we utilized a genetic approach to reveal LLRCs in normal non-injured livers and characterized their regenerative properties in vivo and in culture. We found that LLRCs were located in biliary vessels and participated in the regeneration of biliary but not hepatocyte injury. In culture experiments the sorted LLRCs displayed an enhanced self-renewal capacity but a unipotent biliary differentiation potential. Transcriptome analysis revealed a unique set of tumorigenesis- and nervous system-related genes upregulated in LLRCs when compared to non-LRC cholangiocytes. We conclude that the LLRCs established during the normal morphogenesis of the liver do not represent a multipotent primitive somatic stem cell population but act as unipotent biliary progenitor cells. Overall design: Transcriptome comparison of label-retaining biliary epithelial cells and non-label-retaining biliary epithelial cells (cells with GFP expression were compared to the cells without GFP). Illumina HiSeq 2000 was used to analyze 8 RNA samples from 4 mice.

Publication Title

A label-retaining but unipotent cell population resides in biliary compartment of mammalian liver.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP149099
Transcriptome of liver tissue in 2 week old and E17.5 Stabilin-1 knock-out mice
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Stabilin-1/CLEVER-1 is a multidomain protein present in lymphatic and vascular endothelial cells and in M2 immunosuppressive macrophages. Stabilin-1 functions in scavenging, endocytosis and leukocyte adhesion to and transmigration through the endothelial cells. Overall design: The transcriptome of liver tissue in 2wk old and E17.5 Stab1 knock-out mice was compared to that of corresponding wild type mice

Publication Title

Enhanced Antibody Production in Clever-1/Stabilin-1-Deficient Mice.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE35819
Comparison of hypoxia (4 % O2) cultured human embryonic stem cells (hESCs) to normoxia (21 % O2) cultured
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Human Exon 1.0 ST Array (huex10st)

Description

We compared the transcriptome at gene expression level in hypoxic and normoxic conditions.

Publication Title

Continuous hypoxic culturing of human embryonic stem cells enhances SSEA-3 and MYC levels.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon SRP056115
The interaction of PRC2 with RNA or chromatin is mutually antagonistic [RNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Polycomb repressive complex 2 (PRC2) maintains developmental regulator genes in a repressed state through methylation of histone H3 at lysine 27 (H3K27me3) and is necessary for cell differentiation. We and others have previously found that the PRC2 subunit Suz12 interacts with RNA in vitro and other studies have shown that Ezh2 and Jarid2 also possess RNA binding function. The interaction of PRC2 with RNA has been suggested to regulate PRC2 targeting or enzymatic activity, but the RNAs directly bound by PRC2 in cells, and the role of each PRC2 RNA binding subunit, remain unclear. We have used different CLIP techniques, which use UV-crosslinking to allow detection of direct Suz12-RNA interactions as they occur in living mouse ES cells. Suz12 binds nascent RNA and has a preference for interaction with the 3'UTR, showing it does have binding specificity in cells. RNAs bound by Suz12 at the 3'UTR encode developmental regulator genes. Suz12 remains bound to RNA upon deletion of Ezh2 or Jarid2 showing that it binds RNA independently of other PRC2 subunits. We also show that binding of Suz12 to RNA or chromatin is mutually inhibitory. Although Ezh2 and Jarid2 also bind RNA, Ezh2 and Jarid2 deletion causes an increase in Suz12 RNA binding, without changing its specificity, which reflects the loss of Suz12 from chromatin. Similarly, disruption of Suz12-RNA interactions by RNA polymerase II inhibition or RNase treatment increases Suz12 binding to chromatin. These results therefore suggest that Suz12 acts as an RNA sensor, binding to the 3'UTR of nascent RNAs and modulating the interaction of PRC2 with chromatin. Overall design: Total RNAseq libraires from of Mus musculus Ezh2 fl/fl Stem Cells after and before Tamoxifen treatment.Up to three replicates per condition

Publication Title

The interaction of PRC2 with RNA or chromatin is mutually antagonistic.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056802
Genome-wide mapping of TEL-AML1 targets in acute leukemia
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Around 20-25% of childhood acute lymphoblastic leukemias carry the TEL-AML1 (TA) fusion gene. It is a fusion of two central hematopoietic transcription factors, TEL (ETV6) and AML1 (RUNX1). Despite its prevalence, the exact genomic targets of TA have remained elusive. We evaluated gene loci and enhancers targeted by TA genome-wide in precursor B acute leukemia cells using global nuclear run-on sequencing (GRO-seq). Overall design: Nascent RNA expression profiles were generated with GRO-seq after TEL-AML1 expression in the Nalm6 pre-B-ALL cell line in four different time points (0, 4, 12 and 24 h). TEL-AML1-mut and luciferase induction cell lines were used as controls. Two replicates were included for all six samples.

Publication Title

Genome-wide repression of eRNA and target gene loci by the ETV6-RUNX1 fusion in acute leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact