refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 50 results
Sort by

Filters

Technology

Platform

accession-icon SRP184530
A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We previously reported a pathogenic de novo W342 mutation in the transcriptional corepressor CtBP1 in four independent patients with neurodevelopmental disabilities. Here, we report the clinical phenotypes of seven additional individuals with the same recurrent de novo CtBP1 mutation. Within this cohort we identified consistent CtBP1-related phenotypes of intellectual disability, ataxia, hypotonia and tooth enamel defects present in all patients. The W342 mutation in CtBP1 is located within a region implicated in a high affinity-binding cleft for CtBP-interacting proteins. Unbiased proteomic analysis demonstrated reduced interaction of several chromatin modifying factors with the CtBP1 W342 mutant. Genome-wide transcriptome analysis in human glioblastoma cells lines expressing -CtBP1 R342 (wt) or W342 mutation revealed changes in the expression profiles of genes controlling multiple cellular processes. Patient-derived dermal fibroblasts were found to be more sensitive to apoptosis during acute glucose deprivation compared to controls. Glucose deprivation strongly activated the BH3-only pro-apoptotic gene NOXA, suggesting a link between enhanced cell death and NOXA expression in patient fibroblasts. Our results suggest that context-dependent relief of transcriptional repression of the CtBP1 mutant W342 allele may contribute to deregulation of apoptosis in target tissues of patients leading to neurodevelopmental phenotypes. Overall design: Total RNA samples were isolated from 3 different cultures of HTB17 cells that overexpressed CtBP1 wt or the pathogenic mutant, W342 and analyzed by high- throughput RNA sequencing.

Publication Title

A pathogenic CtBP1 missense mutation causes altered cofactor binding and transcriptional activity.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP011903
RBFOX1 Splicing and Transcriptional Regulation in Neurons
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

We used RNA sequencing to identify the RBFOX1 splicing network at a genome-wide level in primary human neural stem cells during differentiation. We observe that RBFOX1 regulates a large set of alternative splicing events implicated in neurogenesis and cell maintenance. Subsequent alterations in gene expression define an additional transcriptional network regulated by RBFOX1 involved in neurodevelopmental pathways remarkably parallel to those affected by splicing. Overall design: RNA sequencing at a 75bp single-end read scale was performed using polyA-enriched RNA from 5 biological replicates of primary human neural progenitor cell lines generated by lentiviral-mediated knockdown of GFP (control) or RBFOX1 and differentiated for 4 weeks.

Publication Title

RBFOX1 regulates both splicing and transcriptional networks in human neuronal development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE78202
Placental protein-1 (Plac1) modulates immune tolerance in mammary tumor cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Plac1 is an X-linked (Xq26) trophoblast gene expressed at high levels in the placenta, at low levels in the testis, but not in other normal somatic tissues. However, it is re-expressed in several malignancies, including breast, colon, lung, gastric, liver and endometrial cancers as well as in most human cancer cell lines. Plac1 contains HLA-A2-restricted epitopes capable of eliciting a cytotoxic T lymphocyte (CTL) response against human breast cancer cells, and colorectal cancer patients with a Plac1-specific CTL response demonstrate long-term survival. To explore the role of Plac1 in cancer, mouse mammary tumor E0771 cells expressing high levels of Plac1 were transduced with a lentivirus expressing a Plac1 shRNA (E0771/shPlac1).

Publication Title

Plac1 Is a Key Regulator of the Inflammatory Response and Immune Tolerance In Mammary Tumorigenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE32078
Differential gene expression profiles during embryonic heart development in diabetic mice pregnancy
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Congenital heart defects (CHD) are one of the most common defects in offspring of diabetic mothers. There is a clear association between maternal diabetes and CHD; however the underlying molecular mechanism remains unknown. We hypothesized that maternal diabetes affects with the expression of early developmental genes that regulate the essential developmental processes of the heart, thereby resulting in the pathogenesis of CHD. We analyzed genome-wide expression profiling in the developing heart of embryos from diabetic and control mice by using the oligonucleotide microarray. Microarray analysis revealed that a total of 878 genes exhibited more than 1.5 fold changes in expression level in the hearts of experimental embryos in either E13.5 or E15.5 compared with their respective controls. Expression pattern of genes that is differentially expressed in the developing heart was further examined by the real-time reverse transcriptase-polymerase chain reaction. Several genes involved in a number of molecular signaling pathways such as apoptosis, proliferation, migration and differentiation in the developing heart were differentially expressed in embryos of diabetic pregnancy. It is concluded that altered expression of several genes involved in heart development may contribute to CHD in offspring of diabetic mothers.

Publication Title

Differential gene expression profiles during embryonic heart development in diabetic mice pregnancy.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE68615
An autoregulatory RelB:p50 NF-B pathway perpetuates pro-survival TNF response in multiple myeloma
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseRef-8 v2.0 expression beadchip

Description

Pro-inflammatory cytokines were shown to promote growth and survival of cancerous cells. TNF induced RelA:p50 NF-B dimer via the canonical pathway is thought to link inflammation with cancer. Integrating biochemical and computational studies we identify that deficiency of non-canonical signal transducer p100 triggers a positive autoregulatory loop, which instead perpetuates an alternate RelB:p50 containing NF-B activity upon TNF treatment. TNF stimulated RelB:p50 dimer is sufficient for mediating NF-B target gene-expressions and suppressing apoptotic cellular death independent of principal NF-B subunit RelA. We further demonstrate that activating mutations in non-canonical NF-B module deplete multiple myeloma cells of p100, thereby, provoking autoregulatory RelB:p50 activation. Finally, autoregulatory control reinforces protracted pro-survival NF-B response, albeit comprising of RelB:p50, upon TNF priming that protects myeloma cells with dysfunctional p100 from subsequent apoptotic insults. In sum, we present evidence for positive autoregulation mediated through the NF-B system and its potential involvement in human neoplasm.

Publication Title

Non-canonical NFκB mutations reinforce pro-survival TNF response in multiple myeloma through an autoregulatory RelB:p50 NFκB pathway.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE143998
Whole transcript analysis of amyloid beta 42 (Aβ42)-induced SH-SY5Y cells in control and treated groups
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

Whole transcript analysis of amyloid beta 42 (Aβ42)-induced SH-SY5Y cells in control and treated groups (curcumin, piperine and combination therapy) were assessed using microarray profiling. A number of up-regulated and down-regulated genes were altered in sample-specific group.

Publication Title

Explicating anti-amyloidogenic role of curcumin and piperine via amyloid beta (A<i>β</i>) explicit pathway: recovery and reversal paradigm effects.

Sample Metadata Fields

Sex, Specimen part, Cell line

View Samples
accession-icon GSE54054
Expression data from mouse liver
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Hepatocellular carcinoma (HCC) is a deadly disease, often unnoticed till the late stages, where treatment options become limited. Thus, there is a critical need to identify early biomarkers for detection of the developing HCC, as well as molecular pathways that would be amenable to therapeutic intervention. While efforts using human serum and tissues from late stage patients have been undertaken, progress has been limited. We have therefore explored the possibility of utilizing established mouse models for the discovery of biomarkers, as well as to understand in a systematic manner the molecular pathways that are progressively deregulated by the various etiological factors in contributing to HCC formation. As an initial effort, we have used the Hepatitis B surface antigen (HBsAg) transgenic mice as a hepatitis model, which have been exposed to aflatoxin B1 (AFB1). In this report, we present the initial findings from a extensive longitudinal study, which confirms the synergistic effect of both these etiological factors, with a gender bias towards male mice. Tumors from the mouse models were validated both histologically as well as by molecular transcriptome analysis by comparison with human HCCs. In addition, using these models, we have identified carnitine as a novel biomarker for HCC development, which was again validated using human HCC samples. Conclusion: This study therefore highlights the utility of these mouse models in identifying biomarkers for detection of human HCCs, as well as for the systematic analysis of molecular pathways that are affected by various etiological agents during the progression of HCC from an untransformed hepatocyte, which could provide novel options for targeted therapy.

Publication Title

Molecular characterization of hepatocarcinogenesis using mouse models.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE27313
Expression data from human mesenchymal stem cells treated with Wnt3a
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Wnt signaling is upregulated frequently in several cancers, including sarcomas. Since, there is cell-context dependent variation in the target gene expression, to identify canonical Wnt targets in sarcomas, we used human mesenchymal stem cells.

Publication Title

High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/β-catenin target gene, CDC25A.

Sample Metadata Fields

Treatment, Time

View Samples
accession-icon SRP065661
Innate-like functions of natural killer T cell subsets result from highly divergent gene programs [single_cell_RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 405 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Natural killer T (NKT) cells have immune stimulatory or inhibitory effects on the immune response that are context-dependent. This may be attributed in part to the existence of functional NKT cell subsets; however, these functional subsets have only been characterized on the basis of differential expression of a few transcription factors and cell surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic and epigenomic levels, and by single-cell RNA sequencing. Our data indicate that despite their similar antigen specificity, the functional NKT cell subsets are highly divergent populations characterized by many gene expression and epigenetic differences. Therefore the thymus imprints innate-like NKT cells with novel combinations of properties, including differences in proliferative capacity, homing, and effector functions that were not previously anticipated. Overall design: Analysis of single cell transcriptomic heterogeneity in mouse Va14 iNKT thymocyte subsets (NKT1, NKT2, NKT17 and NKT0). Samples were generated from individual experiment using a pool of thymocytes prepared from five five-week old C57BL/6J females. NKT cells subtypes were isolated from thymuses and directly sorted by flow cytometry into lysis buffer (96 well plate single cell sort). The preparation of samples occurred in 2 different batches (both having a equal representation of the different cell populations).

Publication Title

Innate-like functions of natural killer T cell subsets result from highly divergent gene programs.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE48392
Response of mammary tissue to high-LET HZE particle (Silicon ions) radiation or low-LET gamma-rays
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Transcriptional profiling of mammary tissue irradiated at 10 weeks of age with either 100 cGy sparsely ionizing gamma-rays, or 10 cGy or 30 cGy densely ionizing radiation (350 MeV/amu Si). Mammary tissue was collected 1 weeks, 4 weeks, and 12 weeks post-irradiation.

Publication Title

Irradiation of juvenile, but not adult, mammary gland increases stem cell self-renewal and estrogen receptor negative tumors.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact