refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 746 results
Sort by

Filters

Technology

Platform

accession-icon GSE72490
Differential expression analysis between Microadenoma and Macroadenoma in Cushing's Disease
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

ACTH-dependent hypercortisolism caused by a pituitary adenoma [Cushings disease (CD)] is the most common cause of endogenous Cushings syndrome. CD is often associated with several morbidities, including hypertension, diabetes, osteoporosis/bone fractures, secondary infections, and increased cardiovascular mortality. While the majority (80%) of the corticotrophinomas visible on pituitary magnetic resonance imaging are microadenomas (MICs, <10 mm of diameter), some tumors are macroadenomas (MACs, 10 mm) with increased growth potential and invasiveness, exceptionally exhibiting malignant demeanor. In addition, larger and invasive MACs are associated with a significant increased risk of local complications, such as hypopituitarism and visual defects. Given the clinical and molecular heterogeneity of corticotrophinomas, the aim of this study was to investigate the pattern of genetic differential expression between MIC and MAC, including the invasiveness grade as a criterion for categorizing these tumors. In this study, were included tumor samples from patients with clinical, laboratorial, radiological, and histopathological diagnosis of hypercortisolism due to an ACTH-producing pituitary adenoma. Differential gene expression was studied using an Affymetrix microarray platform in 12 corticotrophinomas, classified as non-invasive MIC (n = 4) and MAC (n = 5), and invasive MAC (n = 3), according to modified Hardy criteria. Somatic mutations in USP8 were also investigated, but none of the patients exhibited USP8 variants. Differential expression analysis demonstrated that non-invasive MIC and MAC have a similar genetic signature, while invasive MACs exhibited a differential expression profile. Among the genes differentially expressed, we highlighted CCND2, ZNF676, DAPK1, and TIMP2, and their differential expression was validated through quantitative real-time PCR in another cohort of 15 non-invasive and 3 invasive cortocotrophinomas. We also identified potential biological pathways associated with growth and invasiveness, TGF- and G protein signaling pathways, DNA damage response pathway, and pathways associated with focal adhesion. Our study revealed a differential pattern of genetic signature in a subgroup of MAC, supporting a genetic influence on corticotrophinomas in patients with CD.

Publication Title

Transcriptome Analysis Showed a Differential Signature between Invasive and Non-invasive Corticotrophinomas.

Sample Metadata Fields

Sex, Specimen part, Disease

View Samples
accession-icon GSE38063
Comparison of the long-term effects of calorie restriction without malnutrition on global gene expression profiles of rat and human skeletal muscle
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip, Illumina Rat Ref-12 v1

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38012
Comparison of the long-term effects of calorie restriction without malnutrition on global gene expression profiles of rat and human skeletal muscle [Human]
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

With the population of older and overweight individuals on the rise in the Western world, there is an ever greater need to slow the aging processes and reduce the burden of age-associated chronic disease that would significantly improve the quality of human life and reduce economic costs. Caloric restriction (CR), is the most robust and reproducible intervention known to delay aging and to improve healthspan and lifespan across species (1); however, whether this intervention can extend lifespan in humans is still unknown. Here we report that rats and humans exhibit similar responses to long-term CR at both the physiological and molecular levels. CR induced broad phenotypic similarities in both species such as reduced body weight, reduced fat mass and increased the ratio of muscle to fat. Likewise, CR evoked similar species-independent responses in the transcriptional profiles of skeletal muscle. This common signature consisted of three key pathways typically associated with improved health and survival: IGF-1/insulin signaling, mitochondrial biogenesis and inflammation. To our knowledge, these are the first results to demonstrate that long-term CR induces a similar transcriptional profile in two very divergent species, suggesting that such similarities may also translate to lifespan-extending effects in humans as is known to occur in rodents. These findings provide insight into the shared molecular mechanisms elicited by CR and highlight promising pathways for therapeutic targets to combat age-related diseases and promote longevity in humans.

Publication Title

Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP069966
Gene expression analysis of mouse liver after bile duct ligation (BDL) treated or not with anti-miR-873
  • organism-icon Mus musculus
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

Background & Aims. Glycine N-methyltransferase (GNMT) is an essential regulator of the total transmethylation flux in the mammalian liver. Distinct DNA methylation patterns are characteristic of liver development, hepatic de-differentiation and liver disease progression, processes in which the levels of GNMT decrease dramatically by mechanisms still poorly understood. Interestingly, putative binding sites for the microRNA miRNA-873-5p were identified in the 3´UTR of GNMT suggesting a potential role for miRNA-873-5p in GNMT regulation. Results. We have identified that the hepatic expression of miRNA-873-5p was increased in a cohort of cirrhotic and liver cancer patients associated with a down-regulation of GNMT levels. Moreover, during liver development, hepatic de-differentiation and fibrosis, the elevation of miRNA-873-5p coincided with the reduction of GNMT expression, indicating that miRNA-873-5p specifically targets the expression of GNMT. Under these circumstances, inhibition of miRNA-873-5p induced GNMT levels and decreased global CpG methylation and transmethylation flux. Indeed, reestablishment of GNMT expression by miRNA-873-5p inhibition reduced hepatocyte de-differentiation, and abolished completely the mortality produced after bile duct ligation as a result of decreased proinflamatory and profibrogenic markers. miRNA-873-5p knockdown-mediated antifibrotic effect was significantly blunted if its effect on GNMT was blocked. Conclusion. Taken together, our studies highlight the role of miRNA-873-5p as a key regulator of GNMT expression, paving the way for new therapeutical approaches in liver de-differentiation and fibrosis. Overall design: Genome-wide changes in gene Expression in mouse livers from BDL treated or not with anti-miR-873 were generated by RNAseq.

Publication Title

MiR-873-5p acts as an epigenetic regulator in early stages of liver fibrosis and cirrhosis.

Sample Metadata Fields

Age, Cell line, Treatment, Subject

View Samples
accession-icon GSE87109
Conserved and species-specific molecular denominators in mammalian skeletal muscle aging
  • organism-icon Macaca mulatta, Mus musculus, Homo sapiens, Rattus norvegicus
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina ratRef-12 v1.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87105
Conserved and species specific molecular denominators in mammalian aging [human]
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Aging is a complex phenomenon involving functional decline in multiple physiological systems. We focused on skeletal muscle to identify pathways that modulate function and healthspan by global expression profiles and specific mechanisms fundamental to aging processes. Our experimental design integrated comparative analysis of mice, rats, rhesus monkeys and humans and targeted three key time points during their lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species with age. Notably, mitochondrial transcript levels were better preserved in aging human muscle, suggesting an evolution-driven fitness more robust than in other species. The identification of these conserved pathways uncovers common molecular mechanisms intrinsic to health and lifespan, while unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87107
Conserved and species specific molecular denominators in mammalian aging [rat]
  • organism-icon Rattus norvegicus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Aging is a complex phenomenon involving functional decline in multiple physiological systems. We focused on skeletal muscle to identify pathways that modulate function and healthspan by global expression profiles and specific mechanisms fundamental to aging processes. Our experimental design integrated comparative analysis of mice, rats, rhesus monkeys and humans and targeted three key time points during their lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species with age. Notably, mitochondrial transcript levels were better preserved in aging human muscle, suggesting an evolution-driven fitness more robust than in other species. The identification of these conserved pathways uncovers common molecular mechanisms intrinsic to health and lifespan, while unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE87108
Conserved and species specific molecular denominators in mammalian aging [mouse]
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Aging is a complex phenomenon involving functional decline in multiple physiological systems. We focused on skeletal muscle to identify pathways that modulate function and healthspan by global expression profiles and specific mechanisms fundamental to aging processes. Our experimental design integrated comparative analysis of mice, rats, rhesus monkeys and humans and targeted three key time points during their lifespans. Pathways related to oxidative stress, inflammation and nutrient signaling, which function collectively to affect the quality and status of mitochondria, emerged across all species with age. Notably, mitochondrial transcript levels were better preserved in aging human muscle, suggesting an evolution-driven fitness more robust than in other species. The identification of these conserved pathways uncovers common molecular mechanisms intrinsic to health and lifespan, while unveiling of species-specific pathways emphasizes the importance of human studies for devising optimal therapeutic modalities to slow the aging process.

Publication Title

Conserved and species-specific molecular denominators in mammalian skeletal muscle aging.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE60992
Cells released from Staphylococcus epidermidis biofilms interact differently from biofilm or planktonic cells with murine host immune system.
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

S. epidermidis ability to form biofilms on indwelling medical devices and its association with the emergence of chronic infections is its main virulence factor. Nevertheless, it has been shown that the cells released from these biofilms are associated with the advent of serious acute infections with bacteraemia as one of the major clinical manifestations. Despite their clinical relevance, very little is known about the impact of biofilm-released cells in pathogenesis. Hence, herein, we characterized the murine immune response to the presence of cells released from S. epidermidis biofilms analysing spleen cells transcriptome by microarrays. These findings may help to explain the recurrent inflammatory symptoms presented by patients with colonization of indwelling medical devices.

Publication Title

&lt;i&gt;Staphylococcus epidermidis&lt;/i&gt; Biofilm-Released Cells Induce a Prompt and More Marked &lt;i&gt;In vivo&lt;/i&gt; Inflammatory-Type Response than Planktonic or Biofilm Cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE24259
Expression data for PAR-1-positive and -negative melanoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PAR-1 is known to be involved in the transition from non-metastatic to metastatic melanoma. We sought to determine the downstream target genes regulated by PAR-1 to determine how PAR-1 is contributing to the metastatic melanoma phenotype.

Publication Title

Protease activated receptor-1 inhibits the Maspin tumor-suppressor gene to determine the melanoma metastatic phenotype.

Sample Metadata Fields

Specimen part, Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact