refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 41 results
Sort by

Filters

Technology

Platform

accession-icon GSE3384
Nemaline myopathy mouse model
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

The aim of this study was to investigate the molecular mechanisms implicated in this mouse model of nemaline myopathy, and to further compare the molecular disease response in different skeletal muscles. For this purpose, snap frozen skeletla muscle specimens from wild type and transgenic for alpha tropomyosin slow mice were studied. Five different muscle types were used (diaphragm, plantaris, extensor digitorum longus, tibialis anterior, gastrocnemus). Mice were sacrificed between 7 and 10 months. RNA pools from 3-5 animals were created and each pool was hybridized to a U74Av2 Affymetrix GeneChip. Datasets from 36 GeneChips were included in this study.

Publication Title

Skeletal muscle repair in a mouse model of nemaline myopathy.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP148173
Therapeutic efficacy of BET bromodomain protein inhhibitor and PD-1 blockade in genetically engineered mouse model of non-small cell lung cancer
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

KRAS mutation is present in about 30% of human lung adenocarcinomas. While recent advances in targeted therapy have shown great promise, KRAS remains undruggable and concurrent alterations in tumor suppressors render KRAS mutant tumors even more resistant to existing therapies. Contributing to the refractoriness of KRAS mutant tumors harboring these co-mutations are immunosuppressive mechanisms such as increased presence of suppressive Tregs in tumors and elevated expression of the inhibitory receptor PD-1 on tumor-infiltrating T cells. BET bromodomain inhibitors demonstrate clinical benefit in hematologic malignancies, and prior reports demonstrate their Treg-disruptive effects in a NSCLC model. Targeting PD-1 inhibitory signals through anti-PD-1 antibody blockade has also shown substantial therapeutic impact in lung cancer although these outcomes are still limited to a minor pool of patients. We therefore hypothesized that the BET bromodomain inhibitor JQ1 would synergize with PD-1 blockade to promote robust anti-tumor response in lung cancer. In the present study, using Kras+/LSL-G12D; Trp53L/L (KP) mouse models of non-small cell lung cancer, we identified cooperative effects between JQ1 and anti-PD-1 antibody that included reduced numbers of tumor-infiltrating Tregs and enhanced activation of tumor-infiltrating T cells, which exhibited a Th1 cytokine profile that favored their demonstrated improved effector function. Furthermore, lung-tumor-bearing mice under this combinatorial treatment regimen showed robust and long-lasting anti-tumor responses compared to either agent alone, culminating in substantial improvement in the survival of treated mice. Thus, combining BET bromodomain inhibition with immune checkpoint blockade offers a promising therapeutic approach for solid malignancies such as lung adenocarcinoma. Overall design: Gene expression analyses of tumor nodules in lung tumor-bearing mice treated with Vehicle (control), JQ1 (Bromodomain inhibitor) and/or anti-PD-1 antibody

Publication Title

BET Bromodomain Inhibition Cooperates with PD-1 Blockade to Facilitate Antitumor Response in <i>Kras</i>-Mutant Non-Small Cell Lung Cancer.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP074298
Differentiation of human embryonic stem cells to HOXA+ hemogenic vasculature that resembles the aorta-gonad-mesonephros
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The production of definitive haematopoietic stem/progenitor cells from human pluripotent stem cells (hPSCs) remains a significant challenge. Using reporter lines to track the endothelial (SOX17) to haematopoietic (RUNX1C) transition, we found that hPSC differentiated in growth factor supplemented serum free medium generated RUNX1C+CD34+ clonogenic cells that homed to the bone marrow, but did not engraft. Compared to repopulation-competent cord blood CD34+ cells, RUNX1C+CD34+ progenitors lacked HOXA gene expression, indicating incorrect mesoderm patterning. This deficiency was ameliorated by a timed pulse of WNT activation combined with ACTIVIN antagonism. Significantly, these HOXA+ cultures now formed complex SOX17+ vessels that produced fetal liver-like haematopoietic cells, similar to the human aorta-gonad-mesonephros (AGM). Comparison of transcriptional profiles of these nascent haematopoietic stem/progenitors with cells isolated from human AGM confirmed significant similarities, consistent with the assignment of our in vitro generated cells to the definitive human haematopoietic lineage. Our findings argue that HOXA codes established early in differentiation predict cellular potential and provide correct cell patterning for the specification of definitive haematopoietic lineages from hPSCs. Overall design: mRNA profiles of 26 samples were obtained for 5 different cell populations and 2 different treatments.

Publication Title

Differentiation of human embryonic stem cells to HOXA<sup>+</sup> hemogenic vasculature that resembles the aorta-gonad-mesonephros.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE32331
Early downstream targets of Notch signaling which contribute to multiciliate cell fate
  • organism-icon Xenopus laevis
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Xenopus laevis Genome 2.0 Array (xlaevis2)

Description

Analysis of epithelial explants injected with the intracellular domain of Notch (ICD) to block the formation of multi-ciliate and proton secreting cells or with dominant negative human Mastermind (HMM) or a DNA binding mutant of Mastermind (DBM) to induce the formation of ectopic multi-ciliate and proton secreting cells. Results show which genes are up or down-regulated when DBM/HMM are compared to ICD.

Publication Title

Multicilin promotes centriole assembly and ciliogenesis during multiciliate cell differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP061522
Truncation of LOC100288798 (SLC38A4-AS) lncRNA in human haploid KBM7 cell line
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Many thousand long non-coding (lnc) RNAs are mapped in the human genome. Time consuming studies using reverse genetic approaches by post-transcriptional knock-down or genetic modification of the locus demonstrated diverse biological functions for a few of these transcripts. The Human Gene Trap Mutant Collection in haploid KBM7 cells is a ready-to-use tool for studying protein-coding gene function. As lncRNAs show remarkable differences in RNA biology compared to protein-coding genes, it is unclear if this gene trap collection is useful for functional analysis of lncRNAs. Here we use the uncharacterized LOC100288798 lncRNA as a model to answer this question. Using public RNA-seq data we show that LOC100288798 is ubiquitously expressed, but inefficiently spliced. The minor spliced LOC100288798 isoforms are exported to the cytoplasm, whereas the major unspliced isoform is nuclear localized. This shows that LOC100288798 RNA biology differs markedly from typical mRNAs. De novo assembly from RNA-seq data suggests that LOC100288798 extends 289kb beyond its annotated 3'' end and overlaps the downstream SLC38A4 gene. Three cell lines with independent gene trap insertions in LOC100288798 were available from the KBM7 gene trap collection. RT-qPCR and RNA-seq confirmed successful lncRNA truncation and its extended length. Expression analysis from RNA-seq data shows significant deregulation of 41 protein-coding genes upon LOC100288798 truncation. Our data shows that gene trap collections in human haploid cell lines are useful tools to study lncRNAs, and identifies the previously uncharacterized LOC100288798 as a potential gene regulator. Overall design: We cultured and processed 8 KBM7 cell lines in one batch. These cell lines were: two wild type KBM7 cells (WT2 and WT3), two monoclonal KBM7 cell lines with gene trap cassette insertions outside of the body of LOC100288798 (C1 and C2), two independently obtained KBM7 clones with gene trap cassette insertion 3kb downstream LOC100288798 transcriptional start site (TSS) (3kb1 and 3kb2), one independently obtained KBM7 clone with gene trap cassette insertion 100kb downstream LOC100288798 TSS replicated twice at the thawing step (100kb1 and 100kb2). We isolated total RNA from all th 8 cell lines, applied DNAseI treatment and ribosomal RNA depletion, and thhen prepared strand-specific RNA-seq libraries, which were pooled in equal molarities and sequenced using Illumina HiSeq 2000 (8 pooled samples were sequence on 2 lanes). We performed 50bp single-end RNA-seq. We used these 8 samples (4 untreated: WT2, WT3, C1, C2 and 4 treated:3kb1, 3kb2, 100kbk1, 100kb2) to analyze genome-wide gene deregulation associated with LOC100288798 lncRNA truncation

Publication Title

A human haploid gene trap collection to study lncRNAs with unusual RNA biology.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE108649
Transcriptomic Predictors of Paradoxical Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome
  • organism-icon Homo sapiens
  • sample-icon 162 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Paradoxical cryptococcosis-associated immune reconstitution inflammatory syndrome

Publication Title

Transcriptomic Predictors of Paradoxical Cryptococcosis-Associated Immune Reconstitution Inflammatory Syndrome.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE119061
Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-beta signaling
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

We utilized oligonucleotide microarrays to measure cellular mRNA decay rates in mock- or reovirus-infected murine L929 cells to determine if changes in host mRNA expression are a consequence of reovirus-induced alterations in cellular mRNA stability.

Publication Title

Reovirus infection induces stabilization and up-regulation of cellular transcripts that encode regulators of TGF-β signaling.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE63678
Expression data from Vulvar, Cervical, Endometrial Carcinoma tissue
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

A growing number of studies on gynecological cancers (GCs) have revealed potential gene markers associated either with the pathogenesis and progression of the disease on representing putative targets for therapy and treatment of cervical (CC), endometrial (EC) and vulvar cancer (VC). However, quite a little overlap is found between these data. In this study we combined data from the three GCs integrating gene expression profile analysis.

Publication Title

Profiling of Discrete Gynecological Cancers Reveals Novel Transcriptional Modules and Common Features Shared by Other Cancer Types and Embryonic Stem Cells.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP039604
Pri-miRNA identification by generating a Drosha null/conditional-null mouse model.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We report the ability of the Drosha null/conditional-null mouse model to enable the identification of pri-miRNA transcripts. The conditional-null allele of Drosha phenocopies the null allele both in mESC and in mice, upon conversion to the null state with Cre. Overall design: Examination of the effects of Drosha deficiency in mouse embryonic stem cells.

Publication Title

microTSS: accurate microRNA transcription start site identification reveals a significant number of divergent pri-miRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58203
Stimulation of RA SFBs with IL1 or PDGF-D
  • organism-icon Homo sapiens
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Synovial fibroblasts of 6 RA patients were treated with IL1 or PDGF-D. The aim of this study was to outline mechanism of the disease RA by a treatment with one of these cytokines.

Publication Title

Novel application of multi-stimuli network inference to synovial fibroblasts of rheumatoid arthritis patients.

Sample Metadata Fields

Treatment, Subject, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact