refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 127 results
Sort by

Filters

Technology

Platform

accession-icon GSE20392
Comparison of GFP- and Nurr1-infected ES-cell derived neurons
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

ES cell-derived neurons of forebrain identity were isolated by magnetic sorting, cultured for 7 days and transduced with either Nurr1 or eGFP lentivirus. After an additional 12 h in culture, mRNA was isolated and subjected to microarray analysis.

Publication Title

NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP059943
Nurr1 and Retinoid X Receptor ligands stimulate Ret signaling in dopamine neurons and can alleviate a-synuclein disrupted gene expression
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We ovexpressed human alpha synuclein alone or together with Nurr1 in mouse primary midbrain cultures and identified the full spectrum of genes whose expression is affected by alpha synuclein, including genes whose expression is normalized after Nurr1 overexpression. Moreover we treated mouse primary midbrain cultures with Bexarotene or short hairpin RNA fro Nurr1, sorted out the dopamine neurons and assessed the effects of Bexarotene and of the Nurr1 downregulation on gene expression. Overall design: Comparison of 3 Synuclein samples to 5 controls (RFP), Comparison of 3 Synuclein + Nurr1 samples to 5 controls (RFP), Comparison of 3 Bexarotene samples to 3 controls (DMSO), comparison of 1 short hairpin against Nurr1 to 1 control (scrambled).

Publication Title

Nurr1 and Retinoid X Receptor Ligands Stimulate Ret Signaling in Dopamine Neurons and Can Alleviate α-Synuclein Disrupted Gene Expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP017560
Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Nurr1 (Nr4a2, nuclear receptor subfamily 4 group A member 2) is needed for the development of ventral midbrain dopaminergic neurons, and has been associated with Parkinson''s disease. We used mice where the Nurr1 gene is ablated by tamoxifen treatment selectively in dopaminergic neurons. As a control, we used tamoxifen-treated mice where Nurr1 is not ablated. By laser microdissection of neurons selected by their TH1 (Th1l, TH1-like homolog) gene expression, we selected dopaminergic neurons for RNA extraction and high-throughput mRNA sequencing, in order to identify genes regulated by Nurr1. We found the main functional category of Nurr1-regulated genes are the nuclear-encoded mitochondrial genes. Overall design: Dopaminergic neurons with or without Nurr1 knocked out. TH-positive neurons were laser capture microdissected from cryostat coronal sections of the midbrain.

Publication Title

Transcription factor Nurr1 maintains fiber integrity and nuclear-encoded mitochondrial gene expression in dopamine neurons.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE17383
Toward a Better Understanding of Potential Roles of Astrocytes in HIV-1-associated Neurocognitive Disorders
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We present a microarray analysis of primary mouse astrocytes exposed to HIV-1 in culture. Results are compared with previous genomic studies of HIV-1 effect in human astrocytes and human and macaque brains.

Publication Title

Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP119967
WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Transcription termination and mRNA export from the nucleus are closely regulated and coordinated processes. Nuclear export factors are recruited to actively transcribed genes through their interactions with protein complexes associated with transcription and co-transcriptional pre-mRNA processing. We determine a new role for the kinase WNK1 in the cross-talk of transcription termination and mRNA export. WNK1 was previously attributed a cytoplasmic role as a regulator of ion transport. However, we now show a nuclear function for this kinase where it is required for efficient mRNA export along with the transcription termination factor PCF11. Finally, we identify the phosphorylation of the CID domain of PCF11 as an important step for the release of the mRNA from the transcription locus, thus allowing efficient mRNA export to the cytoplasm. Overall design: RNA from cytoplasmic and nuclear extracts of HeLa cells was obtained, upon depletion of WNK1 kinase or from control cells. Upon pA selection, libraries were generated and sequenced. A duplicate experiment was performed for each sample.

Publication Title

WNK1 kinase and the termination factor PCF11 connect nuclear mRNA export with transcription.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE7772
Comparison between mRNAs of how germ-line clones embryos and WT embryos at 3-5 h AEL
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Mutant embryos lacking maternal and zygotic HOW exhibit defects in mesoderm development. How is an RNA binding protein that regulates the levels of mRNAs by controling RNA metabolism.

Publication Title

Post-transcriptional repression of the Drosophila midkine and pleiotrophin homolog miple by HOW is essential for correct mesoderm spreading.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43035
NRSF/REST knockdown, and SF-1 overexpression and knockdown
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE43033
Expression data from H295R cells where NRSF/REST or SF-1 were knocked down
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SF-1 is a nuclear receptor transcription factor playing a key role in adrenogonadal development and in adrenocortical tumorigenesis when overexpressed. NRSF/REST is a transcriptional repressor that represses expression of neuronal genes in non-neural tissues. Some data suggest that SF-1 and NRSF/REST can functionally interact in adrenocortical cancer cells.

Publication Title

Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE43032
Expression data from H295R cells in basal conditions/overexpressing SF-1
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

SF-1 is a nuclear receptor transcription factor playing a key role in adrenogonadal development and in adrenocortical tumorigenesis when overexpressed.

Publication Title

Integrative analysis of SF-1 transcription factor dosage impact on genome-wide binding and gene expression regulation.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP169948
Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge (RNA-Seq)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Microglia are yolk sac-derived macrophages residing in the parenchyma of brain and spinal cord, where they interact with neurons and other glial cells by constantly probing their surroundings with dynamic extensions. After different conditioning paradigms and bone marrow (BM) or hematopoietic stem cell (HSC) transplantation, graft-derived cells seed the brain and persistently contribute to the parenchymal brain macrophage compartment. Here we establish that graft-derived macrophages acquire, over time, microglia characteristics, including ramified morphology, longevity, radio-resistance and clonal expansion. However, even after prolonged CNS residence, transcriptomes and chromatin accessibility landscapes of engrafted, BM-derived macrophages remain distinct from yolk sac-derived host microglia. Furthermore, engrafted BM-derived cells display discrete responses to peripheral endotoxin challenge, as compared to host microglia. In human HSC transplant recipients, engrafted cells also remain distinct from host microglia, extending our finding to clinical settings. Collectively, our data emphasize the molecular and functional heterogeneity of parenchymal brain macrophages and highlight potential clinical implications for HSC gene therapies aimed to ameliorate lysosomal storage disorders, microgliopathies or general monogenic immuno-deficiencies. Overall design: overall there are 28 samples, from total of 2 experiments. in each experiment there were at least 3 biological repeats (3 individual mice). Sorting of the CD45.1 and CD45.2 populations were performed from the same animal. Animals were either injected with LPS (2.5 mg/kg) or untreated.

Publication Title

Engrafted parenchymal brain macrophages differ from microglia in transcriptome, chromatin landscape and response to challenge.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact