refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 127 results
Sort by

Filters

Technology

Platform

accession-icon GSE17383
Toward a Better Understanding of Potential Roles of Astrocytes in HIV-1-associated Neurocognitive Disorders
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We present a microarray analysis of primary mouse astrocytes exposed to HIV-1 in culture. Results are compared with previous genomic studies of HIV-1 effect in human astrocytes and human and macaque brains.

Publication Title

Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE7772
Comparison between mRNAs of how germ-line clones embryos and WT embryos at 3-5 h AEL
  • organism-icon Drosophila melanogaster
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Mutant embryos lacking maternal and zygotic HOW exhibit defects in mesoderm development. How is an RNA binding protein that regulates the levels of mRNAs by controling RNA metabolism.

Publication Title

Post-transcriptional repression of the Drosophila midkine and pleiotrophin homolog miple by HOW is essential for correct mesoderm spreading.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13093
Feeding schedule and the circadian clock shape rhythms in hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13060
The effects of temporally restricted feeding on hepatic gene expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporally restricted feeding is known to impact the circadian clock. This dataset shows the effects of temporally restricted feeding on the hepatic transcriptome.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13062
The effects of temporally restricted feeding on hepatic gene expression of Cry1, Cry2 double KO mice
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Restricted feeding impacts the hepatic circadian clock of WT mice. Cry1, Cry2 double KO mice lack a circadian clock and are thus expected to show rhythmical gene expression in the liver. Imposing a temporally restricted feeding schedule on these mice shows how the hepatic circadian clock and rhythmic food intake regulate rhythmic transcription in parallel

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13063
Effects of extensive fasting and subsequent feeding on hepatic transcription
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Temporally restricted feeding has a profound effect on the circadian clock. Fasting and feeding paradigms are known to influence hepatic transcription. This dataset shows the dynamic effects of refeeding mice after a 24hour fasting period.

Publication Title

Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP080121
Next Generation Sequencing Facilitates Quantitative Analysis of Wild Type and FXRalpha-/- testicular Transcriptomes
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goals of this study are to define the putatitve impacts of FXRalpha deficiency in testicular physiology Overall design: Testis mRNA profiles of 10-day old wild type (WT) and FXralpha-/- mice were generated by deep sequencing, on 5 individual mice for each geneotype, sequence on flowcell HS168.

Publication Title

The Bile Acid Nuclear Receptor FXRα Is a Critical Regulator of Mouse Germ Cell Fate.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE77628
Pals1 haplo-insufficiency in nephrons results in proteinuria and cyst formation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Mammalian nephrons are the physiological subunits of mammalian kidneys which consist of different highly apicobasally polarized epithelial cell types. In epithelial cells polarization is controlled by evolutionary conserved CRB, PAR, or SRIB complexes. Here, we focused on the role of Pals1/Mpp5 in the nephron. Pals1, a core component of the apical membrane determining CRB complex, is highly expressed in renal tubular epithelial and glomerular epithelial cells (podocytes). Surprisingly, haplo-deficient mice, lacking one Pals1/Mpp5 allele in the nephron developed a strong phenotype, accompanied by cyst formation and severe renal filtration barrier defects, which subsequently lead to death after 6-8 weeks. Supporting studies in Drosophila nephrocytes, and epithelial cell culture models elucidated the role of Pals1 as a dose dependent upstream regulator of the crosstalk between Hippo- and TGF-signaling during nephrogenesis.

Publication Title

Pals1 Haploinsufficiency Results in Proteinuria and Cyst Formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46990
Gene expression changes induced by expression of MN1 deletion mutants in murine bone marrow cells
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Extensive molecular profiling of leukemias and preleukemic diseases has revealed that distinct clinical entities, like acute myeloid (AML) and T-lymphoblastic leukemia, share the same pathogenetic mutations. It is not well understood how the cell of origin, accompanying mutations, extracellular signals or structural differences in a mutated gene determine the phenotypic identity of the malignant disease. We studied the relationship of different protein domains of the MN1 oncogene and their effect on the leukemic phenotype, building on the ability of MN1 to induce leukemia without accompanying mutations. We found that the most C-terminal domain of MN1 was required to block myeloid differentiation at an early stage, and deletion of an extended C-terminal domain resulted in loss of myeloid identity and cell differentiation along the T-cell lineage in vivo. Megakaryocytic/erythroid lineage differentiation was blocked by the most N-terminal domain. In addition, the N-terminus was required for proliferation and leukemogenesis in vitro and in vivo through upregulation of HoxA9, HoxA10 and Meis2. Our results provide evidence that a single oncogene can modulate cellular identity of leukemic cells based on its active domains. It is therefore likely that different mutations in the same oncogene may impact cell fate decisions and phenotypic appearance of malignant diseases.

Publication Title

Cell fate decisions in malignant hematopoiesis: leukemia phenotype is determined by distinct functional domains of the MN1 oncogene.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE11923
High-temporal resolution profiling of mouse liver
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

High-temporal resolution profiling was performed on mouse liver to detect rhythmic transcripts

Publication Title

Harmonics of circadian gene transcription in mammals.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact