refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 253 results
Sort by

Filters

Technology

Platform

accession-icon GSE27185
System level characterization of galactose mutants of yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Adaptively evolved mutants of yeast on galactose were characterized by feremtation physiology and tools from systems biology.

Publication Title

Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis.

Sample Metadata Fields

Time

View Samples
accession-icon GSE20155
Comparative transcriptome analysis of yeast expressing the fungal desaturases
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

To study how the presence of PUFAs influences central cellular processes, and in order to perform lipidome, transcriptome and molecular studies we decided to use yeast as a model organism. We therefore co-expressed 12-desaturase and 6- desaturase genes from Mucor rouxii in S. cerevisiae with the objective to obtain a yeast strain that contains PUFAs, especially linoleic acid (LA, C18:29,12) and -linolenic acid (GLA, C18:36,9,12), in its membranes.

Publication Title

Heterologous production of polyunsaturated fatty acids in Saccharomyces cerevisiae causes a global transcriptional response resulting in reduced proteasomal activity and increased oxidative stress.

Sample Metadata Fields

Time

View Samples
accession-icon GSE21479
Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The needs for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering. In this work we establish proof-of-concept that whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,873 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being non-silent (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function. With an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at www.sysbio.se/cenpk.

Publication Title

Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54363
Effect of L. rhamnosus GR-1 and L. reuteri RC-14 on host responses in a trial of post-menopausal women
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

A lactobacilli dominated microbiota in most pre and post-menopausal women is an indicator of vaginal health. A Nugent scoring system serves as a proxy for determining the ratio of lactobacilli to other vaginal inhabitants where a high score usually represents a diseased state, whilst an intermediate score represents a warning zone. The objective of this double blinded, placebo-controlled crossover study was to evaluate in 14 post-menopausal women with an intermediate score, the effect of vaginal administration of probiotic L. rhamnosus GR-1 and L. reuteri RC-14 on the microbiota and host response. The probiotic treatment did not result in changes to clinical parameters such as dryness, irritation and comfort, compared to when placebo was applied. Analysis using 16S rRNA sequencing and metabolomics profiling revealed that the proportional abundance of Lactobacillus was increased following probiotic administration as compared to placebo, which was weakly associated with an increase in lactate levels. Analysis of host responses by microarray showed the probiotics had an immune-modulatory response and multiplex cytokine analysis showed up-regulation of IL-5. This is the first study to use an interactomic approach for the study of vaginal probiotic administration in post-menopausal women. It shows that in some cases multifaceted approaches are required to detect the subtle trigger molecular changes induced by the host to instillation of probiotic strains.

Publication Title

A systems biology approach investigating the effect of probiotics on the vaginal microbiome and host responses in a double blind, placebo-controlled clinical trial of post-menopausal women.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE50010
Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via RXR-gamma activation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Tumor metastasis and lack of NKG2D ligand (NKG2DL) expression are associated with poor prognosis in patients with colon cancer. Here we found that spironolactone (SPIR), an FDA-approved diuretic drug with a long-term safety profile, can upregulate NKG2DL expression in multiple colon cancer cell lines by activating the ATM-Chk2-mediated checkpoint pathway, which in turn enhances tumor elimination by natural killer cells. SPIR can also upregulate the expression of metastasis-suppressor genes TIMP2 and TIMP3, thereby reducing tumor cell invasiveness. Although SPIR is an aldosterone antagonist, its anti-tumor effects are independent of the mineralocorticoid receptor pathway. Instead, by screening the human nuclear hormone receptor siRNA library, we identify retinoid X receptor gamma (RXR gamma) as being indispensable for the anti-tumor functions of SPIR. Collectively, our results strongly support the use of SPIR or other RXR gamma-agonists with minimal side effects for colon cancer prevention and therapy.

Publication Title

Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via RXRγ activation.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE58589
TOX2 regulates human natural killer cell development by controlling T-BET expression
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Thymocyte selection-associated high mobility group box protein family member 2 (TOX2) is a transcription factor belonging to the TOX family that shares a highly conserved high mobility group DNA binding domain with the other TOX members. While TOX1 has been shown to be an essential regulator of T-cell and natural killer (NK) cell differentiation in mice, little is known about the roles of the other TOX family members in lymphocyte development, particularly in humans. In this study, we found that TOX2 was preferentially expressed in mature human NK cells and was upregulated during in vitro differentiation of NK cells from human umbilical cord blood (UCB)derived CD34+ cells. Gene silencing of TOX2 intrinsically hindered the transition between early developmental stages of NK cells, while overexpression of TOX2 enhanced the development of mature NK cells from UCB CD34+ cells. We subsequently found that TOX2 was independent of ETS-1 but could directly upregulate the transcription of TBX21 (encoding T-BET). Overexpression of T-BET rescued the TOX2 knockdown phenotypes. Given the essential function of T-BET in NK cell differentiation, TOX2 therefore plays a crucial role in controlling normal NK cell development by acting upstream of TBX21 transcriptional regulation.

Publication Title

TOX2 regulates human natural killer cell development by controlling T-BET expression.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE89634
Expression data from NKG2A/C/E+ and negative CD4 effectors after influenza A infection
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

CD4 T cells can differentiate into a hetergenous population of effector T cells. A population of cytotoxic CD4 T cells can be generated against influenza challenge, however identifying these cells have been challenging. The expression of NKG2A/C/E on CD4 T cells identifies CD4 T cells with cytotoxic potential thus allowing further characterization of this subset of CD4 effector cells.

Publication Title

NKG2C/E Marks the Unique Cytotoxic CD4 T Cell Subset, ThCTL, Generated by Influenza Infection.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21511
EWS-FLI1 reactivates a neural crest stem cell program in human neural crest-derived mesenchymal stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Ewing sarcoma family of tumors (ESFT) are aggressive bone and soft tissue tumors of unknown cellular origin. Most ESFT express EWS-FLI1, a chimeric protein which functions as a growth-promoting oncogene in ESFT but is toxic to most normal cells. A major difficulty in understanding EWS-FLI1 function has been the lack of an adequate model in which to study EWS-FLI1-induced transformation. Although the cell of origin of ESFT remains elusive, both mesenchymal (MSC) and neural crest (NCSC) have been implicated. We recently developed the tools to generate NCSC from human embryonic stem cells (hNCSC). In the current study we used this model to test the hypothesis that neural crest-derived stem cells are the cells of origin of ESFT and to evaluate the consequences of EWS-FLI1 expression on human neural crest biology.

Publication Title

Modeling initiation of Ewing sarcoma in human neural crest cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE141821
Transcriptomic analysis of CLL4-induced liver injury in WT and DPT KO mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

C57Bl6J mice were injected CCL4 for 8 weeks to induce liver injury and livers were used to prepare RNA.

Publication Title

Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE19587
Imaging-guided microarray: Identifies molecular markers in the pathogenesis of Parkinsons disease
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The full complement of molecular pathways contributing to Parkinsons disease (PD) pathogenesis remains unknown. Here, to address this issue, we began by using a high-resolution variant of functional magnetic resonance imaging (fMRI) to pinpoint brainstem regions differentially affected by, and resistant to, the disease. Then, relying on the imaging information as a guide, we profiled gene expression levels of postmortem brain samples and used a factorial statistical model to identify a disease related decrease in the expression of the polyamine enzyme spermidine/spermine N1-acetyltransferase 1 (SAT1). Next, a series of studies were performed to confirm the pathogenic relevance of this finding. First, to test for a causal link between polyamines and -synuclein toxicity, we investigated a yeast model expressing -synuclein. Polyamines were found to enhance the toxicity of -synuclein, and an unbiased genome-wide screen for modifiers of -synuclein toxicity identified Tpo4, a member of a family of proteins responsible for polyamine transport. Second, to test for a causal link between SAT1 activity and PD histopathology we investigated a mouse model expressing -synuclein. DENSPM (N1, N11-diethylnorspermine), a polyamine analog that increases SAT1 activity, was found to reduce PD histopathology, while Berenil (diminazene aceturate), a pharmacological agent that reduces SAT1 activity, worsened the histopathology. Third, we genotyped PD patients and controls and isolated a rare but novel variant in the SAT1 gene, although the functional significance of this genetic variant was not identified. Taken together, the results suggest that the polyamine pathway contributes to PD pathogenesis.

Publication Title

Polyamine pathway contributes to the pathogenesis of Parkinson disease.

Sample Metadata Fields

Sex, Age, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact