refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 252 results
Sort by

Filters

Technology

Platform

accession-icon GSE6414
Expression data from soybean seed compartments with embryos at the globular stage
  • organism-icon Glycine max
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

We microdissected each compartment from 6-micron paraffin sections using the Leica AS LMD system to identify all genes active in different compartments of a soybean seed containing globular-stage embryos.

Publication Title

Using genomics to study legume seed development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE680
Transcript Profiling of Arabidopsis Plant Life Cycle
  • organism-icon Arabidopsis thaliana
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis Genome Array (ag)

Description

This series contain all stages Arabidopsis plant development. Stages of development includes unfertilized ovule, 24-Hr post-fertilization seed, globular stage seed, cotyledon stage seed, mature green seed, post-mature green seed, post-germination seedling, rosette leaf, root, stem, and floral bud.

Publication Title

Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10911
Expression data from MCF-7aro aromatase inhibitor-resistant, tamoxifen-resistant and LTEDaro lines.
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

MCF-7aro cells were used to generate a cell culture model system that is resistant to 3 aromatase inhibitors (AIs), letrozole, anastrozole and exemestane. For comparison, the MCF-7aro cells were also used to generate the tamoxifen-resistant cells as well as long-term estrogen deprived, LTEDaro.

Publication Title

Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE109227
Cerulein induced acute pancreatitis in C57Bl/6J
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

There still is a lack of specific, early markers for acute pancreatitis.

Publication Title

RCAN1 is a marker of oxidative stress, induced in acute pancreatitis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE5806
Identification of differentially expressed genes in brm-101 and syd-2 mutants
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Global analysis of gene expression in 10 day old brm-101 and syd-2 mutant seedlings compared to wild type Landsberg erecta seedlings.

Publication Title

Unique, shared, and redundant roles for the Arabidopsis SWI/SNF chromatin remodeling ATPases BRAHMA and SPLAYED.

Sample Metadata Fields

Age

View Samples
accession-icon GSE7674
G9a histone methyltransferase maintains genomic imprinting in the mouse placenta.
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Whereas DNA methylation is essential for genomic imprinting, the importance of histone methylation in the allelic repression of imprinted genes is unclear. Imprinting control regions (ICRs), however, are consistently marked by histone H3 K9 methylation on their DNA-methylated allele. In the placenta, the paternal silencing along the Kcnq1 domain on distal chromosome 7 also correlates with the presence of H3-K9 methylation, but imprinted repression at these genes is maintained independently of DNA methylation. To explore which histone methyltransferase (HMT) could mediate the allelic H3-K9 methylation on distal chromosome 7, and at ICRs, we generated mouse conceptuses deficient for the SET-domain protein G9a. We find that in the embryo and placenta, the differential DNA methylation at ICRs and imprinted genes is maintained in the absence of G9a. Accordingly, in embryos, imprinted gene expression is unchanged at the domains analysed, in spite of a global loss of H3-K9 di-methylation (H3K9me2). In contrast, the placenta-specific imprinting of genes on distal chromosome 7 is lost in the absence of G9, and this correlates with a loss of H3K9me2 and H3K9me3. These findings provide the first in vivo evidence for the involvement of a SET domain protein in imprinting and highlight the importance of histone lysine methylation rather than DNA methylation in the maintenance of imprinting in the trophoblast lineage.

Publication Title

G9a histone methyltransferase contributes to imprinting in the mouse placenta.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE36379
Expression data from mouse pancreatic cell lines treated with chromatin-targeting small molecules
  • organism-icon Mus musculus
  • sample-icon 594 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Mouse Genome 430A Array (htmg430a)

Description

We measured the genome-wide expression changes induced by 29 compounds targeting HDACs, DNMTs, histone lysine methyltransferases (HKMTs), and protein arginine methyltransferases (PRMTs) in pancreatic - and -cell lines.

Publication Title

Chromatin-targeting small molecules cause class-specific transcriptional changes in pancreatic endocrine cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE80148
Adipose Precursor HO-1 determines healthy visceral adipose tissue expansion during obesity
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80147
Adipose Precursor HO-1 prevents healthy visceral adipose tissue expansion during obesity[II]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Excessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors (APs), however, the underlying molecular mechanisms remain unclear. Here, we identify Heme Oxygenase-1 (HO-1) as selectively being upregulated in the AP fraction of WAT, upon high-fat diet (HFD) feeding. Specific conditional deletion of HO-1 in APs of Hmox1fl/fl-Pdgfra Cre mice enhanced HFD-dependent visceral AP proliferation and differentiation, upstream of Cebp and PPAR. Opposite effects on human preadipocyte proliferation and differentiation in vitro were observed following HO-1 overexpression. Mechanistically, HO-1 acts upstream of AKT2 via ROS thresholding in mitochondria. Deletion of HO-1 in APs is sufficient to lower blood glucose, insulin and free fatty acid levels as well as liver steatosis during obesity, an effect not seen when HO-1 was conditionally deleted at later stages of adipogenesis using AdipoQ-Cre. Together, our data identify HO-1 as a diet-induced regulator limiting visceral adipose tissue hyperplasia during obesity.

Publication Title

HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE80146
Adipose Precursor HO-1 prevents healthy visceral adipose tissue expansion during obesity [I]
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Excessive accumulation of white adipose tissue (WAT) is a hallmark of obesity. The expansion of WAT in obesity involves proliferation and differentiation of adipose precursors (APs), however, the underlying molecular mechanisms remain unclear. Here, we identify Heme Oxygenase-1 (HO-1) as selectively being upregulated in the AP fraction of WAT, upon high-fat diet (HFD) feeding. Specific conditional deletion of HO-1 in APs of Hmox1fl/fl-Pdgfra Cre mice enhanced HFD-dependent visceral AP proliferation and differentiation, upstream of Cebp and PPAR. Opposite effects on human preadipocyte proliferation and differentiation in vitro were observed following HO-1 overexpression. Mechanistically, HO-1 acts upstream of AKT2 via ROS thresholding in mitochondria. Deletion of HO-1 in APs is sufficient to lower blood glucose, insulin and free fatty acid levels as well as liver steatosis during obesity, an effect not seen when HO-1 was conditionally deleted at later stages of adipogenesis using AdipoQ-Cre. Together, our data identify HO-1 as a diet-induced regulator limiting visceral adipose tissue hyperplasia during obesity.

Publication Title

HO-1 inhibits preadipocyte proliferation and differentiation at the onset of obesity via ROS dependent activation of Akt2.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact