refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 58 results
Sort by

Filters

Technology

Platform

accession-icon GSE46546
Expression data from FACS purified nociceptor neurons from peripheral sensory ganglia
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The goal of this study was to analyze global gene expression in specific populations of nociceptor sensory neurons, the neurons that detect damaging/noxious stimuli.

Publication Title

Bacteria activate sensory neurons that modulate pain and inflammation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP014197
tRNA fragment profiling in CLP1 mutant (kinase-dead) mice
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Loss of CLP1 activity results in the accumulation of novel sets of small RNA fragments derived from aberrant processing of tyrosine pre-tRNA. Such tRNA fragments sensitize cells to oxidative stress-induced p53 activation and p53-dependent cell death. Overall design: 2 samples, Wt and Clp1(k/k), no replicates

Publication Title

CLP1 links tRNA metabolism to progressive motor-neuron loss.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP035862
Pathways Disrupted in Human ALS Motor Neurons Identified Through Genetic Correction of Mutant SOD1
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Although many distinct mutations in a variety of genes are known to cause Amyotrophic Lateral Sclerosis (ALS), it remains poorly understood how they selectively impact motor neuron biology and whether they converge on common pathways to cause neural degeneration. Here, we have combined reprogramming and stem cell differentiation approaches with genome engineering and RNA sequencing to define the transcriptional changes that are induced in human motor neurons by mutant SOD1. Mutant SOD1 protein induced a transcriptional signature indicative of increased oxidative stress, reduced mitochondrial function, altered sub-cellular transport as well as activation of the ER stress and unfolded protein response pathways. Functional studies demonstrated that perturbations in these pathways were indeed the source of altered transcript levels. Overall design: 5 samples, 2 patient-derived SOD1A4V and 3 isogenic control samples where the mutation has been corrected. All samples are motor neurons derived from induced pluripotent stem cells (iPSCs), and isolated after lentiviral infection with an Hb9:RFP construct and FACS purification. Each sample is a separate biological replicate.

Publication Title

Pathways disrupted in human ALS motor neurons identified through genetic correction of mutant SOD1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19429
Expression data from bone marrow CD34+ cells of MDS patients and healthy controls
  • organism-icon Homo sapiens
  • sample-icon 200 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to gain insight into the molecular pathogenesis of the myelodysplastic syndromes (MDS), we performed global gene expression profiling and pathway analysis on the hematopoietic stem cells (HSC) of 183 MDS patients as compared with the HSC of 17 healthy controls. The most significantly deregulated pathways in MDS include interferon signaling, thrombopoietin signaling and the Wnt pathway. Among the most significantly deregulated gene pathways in early MDS are immunodeficiency, apoptosis and chemokine signaling, whereas advanced MDS is characterized by deregulation of DNA damage response and checkpoint pathways. We have identified distinct gene expression profiles and deregulated gene pathways in patients with del(5q), trisomy 8 or 7/del(7q). Patients with trisomy 8 are characterized by deregulation of pathways involved in the immune response, patients with 7/del(7q) by pathways involved in cell survival, whilst patients with del(5q) show deregulation of integrin signaling and cell cycle regulation pathways. This is the first study to determine deregulated gene pathways and ontology groups in the HSC of a large group of MDS patients. The deregulated pathways identified are likely to be critical to the MDS HSC phenotype and give new insights into the molecular pathogenesis of this disorder thereby providing new targets for therapeutic intervention.

Publication Title

Deregulated gene expression pathways in myelodysplastic syndrome hematopoietic stem cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE4619
Gene expression profiling of CD34+ cells from MDS patients and normal controls
  • organism-icon Homo sapiens
  • sample-icon 63 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to gain insight into the poorly understood pathophysiology of the myelodysplastic syndromes (MDS), we have determined the gene expression profiles of the CD34+ cells of 55 MDS patients using the Affymetrix GeneChip U133 Plus2.0 platform

Publication Title

Gene expression profiles of CD34+ cells in myelodysplastic syndromes: involvement of interferon-stimulated genes and correlation to FAB subtype and karyotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE54219
Molecular genomic and transcriptomic profiling of familial breast cancer.
  • organism-icon Homo sapiens
  • sample-icon 155 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genomic profiling of CHEK2*1100delC-mutated breast carcinomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP067537
Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

One of the most common genetic alterations in acute myeloid leukemia is the internal tandem duplication (ITD) in the FLT3 receptor for cytokine FLT3 ligand (FLT3L). The constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on normal hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. We report that young pre-leukemic mice with the Flt3ITD knock-in allele manifest an expansion of all DCs including classical (cDCs) and plasmacytoid (pDCs). The expansion originated in DC progenitors, occurred in a cell-intrinsic manner and was further enhanced in Flt3ITD/ITD mice. The mutation caused the downregulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Flt3ITD mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T cells (Tregs). Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity in the absence of Tregs. Thus, the FLT3-ITD mutation directly affects DC development, thereby indirectly modulating T cell homeostasis and supporting Treg expansion. This effect of FLT3-ITD may subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. Overall design: Sorted splenic dendritic cell subsets from either Flt3+/+ or Flt3ITD/+ mice were sequenced for mRNA profiling. For each subset per genotype contains 2-3 replicates, all from independent experiments.

Publication Title

Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon E-MEXP-3814
Transcription profiling by array of mouse bone marrow-derived macrophages stimulated by trehalose dimycolated (TDM) or phosphatidylglycerol (PG) control to study how mycobacterial TDM reprograms macrophage global gene expression
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Effect of mycobacterial cell wall component TDM (trehalose dimycolate) of murine macrophage gene expression.

Publication Title

Mycobacterial trehalose dimycolate reprograms macrophage global gene expression and activates matrix metalloproteinases.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE136895
Plant toxin treatment of neonatal mouse cholangiocytes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Extrahepatic bile ducts were isolated from mouse pups at days 0-3 and primary cholangiocytes were isolated. Cholangiocytes were treated with DMSO, bilatresone (TOX4), betavulgarin (TOX2), and isoflavanone (TOX3), as per Lorent et al, Science Translationa Medicine 2015;286:286ra67 (Fig. 1), all in DMSO. Treatment concentrations were 2.0 micrograms/ml, for 6 hours.

Publication Title

Extrahepatic cholangiocyte obstruction is mediated by decreased glutathione, Wnt and Notch signaling pathways in a toxic model of biliary atresia.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP159271
Innate mesenchymal TLR4/MyD88 signals promote spontaneous intestinal tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

This study shows that the TLR4/MyD88 pathway in intestinal mesenchymal cells promotes intestinal carcinogenesis in the APCmin mouse model. Overall design: 3' RNA-Seq (QuantSeq) profiling of ColVIcre+ wt and MyD88 knockout primary mouse intestinal mesenchymal cells before and after treatment with LPS for 6 hours. 3 replicates per group.

Publication Title

Innate Sensing through Mesenchymal TLR4/MyD88 Signals Promotes Spontaneous Intestinal Tumorigenesis.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact