refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 673 results
Sort by

Filters

Technology

Platform

accession-icon SRP046331
Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPKMEF2 signaling [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Identfification of MEF2A target genes using ChIP-exo and RNA-seq in skeletal muscle and primary cardiomyocytes. MEF2 plays a profound role in the regulation of transcription in cardiac and skeletal muscle lineages. To define the overlapping and unique MEF2A genomic targets, we utilized ChIP-exo analysis of cardiomyocytes and skeletal myoblasts. Of the 2783 and 1648 MEF2A binding peaks in skeletal myoblasts and cardiomyocytes, respectively, 294 common binding sites were identified. Genomic targets were compared to differentially expressed genes in RNA-seq analysis of MEF2A depleted myogenic cells. Overall design: The effect of MEF2A gene silencing on gene expression in myoblasts was assessed at 48 hr DM. Up and downregulated genes were then compared to MEF2A target genes identified in ChIP-exo analysis of 48 hr DM C2C12 myoblasts cells and primary cardiomyocytes.

Publication Title

Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE35782
Gene expression data from livers of 3-month-old HNF4alpha knockout mice
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

HNF4alpha is a master regulator of hepatic differentiation. In this study, HNF4alpha was deleted in adult mice using a Cre-LoxP system where Cre recombinase was delivered using an AAV8 virus.

Publication Title

Hepatocyte-specific deletion of hepatocyte nuclear factor-4α in adult mice results in increased hepatocyte proliferation.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE75445
Hepatic Gene Expression Changes in Diethynitrosamin-initiated and Cholic Acid promoted tumors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mice were fed with either normal diet (ND), 0.2% cholic acid diet (0.2%CA), DEN treated and fed ND or DEN treated and fed 0.2%CA diet. DEN was treated at 15 microgram/kg body weight at postnatal day 15. Diets were fed for two months starting 8 months of age till 10 months of age. Livers were collected at10 months of age, Total RNA was isolated and used for microarray experiments.

Publication Title

Bile acids promote diethylnitrosamine-induced hepatocellular carcinoma via increased inflammatory signaling.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE80599
Expression data from human patients with slow or rapid Parkinson's Disease progression
  • organism-icon Homo sapiens
  • sample-icon 67 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219)

Description

Parkinsons Disease is a multi-system, disabling progressive neurodegenerative condition. Clinical progression is highly heterogeneous and, thus far, there are not available biomarkers to accurately predict the rate of disease progression. Thus, identifying molecular signatures that allow discriminating between different progression rates might significantly assist the therapeutic strategy, and enable improved outcomes in clinical trials.

Publication Title

Gene Expression Differences in Peripheral Blood of Parkinson's Disease Patients with Distinct Progression Profiles.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE40800
In vitro Expansion of Hematopoietic Stem and Progenitor Cells Induces Tightly Regulated DNA-Hypermethylation
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Hematopoietic stem and progenitor cells acquire distinct DNA-hypermethylation during in vitro culture.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE40669
In vitro Expansion of Hematopoietic Stem Induces Gene Expression Changes
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Hematopoietic stem and progenitor cells (HPCs) can be maintained in vitro, but the vast majority of their progeny loses stemness during culture. We have analyzed DNA methylation (DNAm) profiles of freshly isolated CD34+ cells and upon expansion on either tissue culture plastic (TCP) or mesenchymal stromal cells (MSCs). Cultured HPCs acquired significant DNA-hypermethylation, particularly in up-stream promoter regions and shore-regions of CpG islands (CGIs). To analyze if these DNAm changes are relevant for differential gene expression we analyzed gene expression profiles of additional samples. As expected highly expressed genes (10% with highest signal intensity in gene expression arrays) were hardly methylated at promoter regions, CGIs and shore-regions.

Publication Title

Hematopoietic stem and progenitor cells acquire distinct DNA-hypermethylation during in vitro culture.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE57002
Mutant IDH inhibits HNF4a to disrupt hepatocyte differentiation and promote cholangiocarcinoma.
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Gene expression of mouse hepatoblasts (HBs) expressing IDH1 WT, IDH1 R132C, IDH2 WT, R172K and empty vector controls (N=2 cultures for each condition) grown on collagen-coated plates and IDH1 R132C and empty vector controls on uncoated plates were evaluated using Affymetrix Mouse 430Av2 DNA microarrays that were processed at the Dana-Farber Cancer Institute core facility (http://macf-web.dfci.harvard.edu/) using their standard protocol.

Publication Title

Mutant IDH inhibits HNF-4α to block hepatocyte differentiation and promote biliary cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8089
Trasncriptional response of Saccharomyces cerevisiae to nitrogen limitation in chemostat culture
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 1 Downloadable Sample
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Zinc is indispensable for the catalytic activity and structural stability of many proteins, and its deficiency can have severe consequences for microbial growth in natural and industrial environments. For example, Zn depletion in wort negatively affects beer fermentation and quality. Several studies have investigated yeast adaptation to low Zn supply, but were all performed in batch cultures, where specific growth rate depends on Zn availability. The transcriptional responses to growth-rate and Zn availability are then intertwined, which obscures result interpretation. In the present study, transcriptional responses of Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under Zn limitation and excess in chemostat culture. To investigate the context-dependency of this transcriptional response, yeast was grown under several chemostat regimes resulting in various carbon (glucose), nitrogen (ammonium) and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified and enabled the definition of a Zn-specific Zap1 regulon comprising of 26 genes and characterized by a broader ZRE consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large amount of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified

Publication Title

Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8035
Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Zinc is indispensable for the catalytic activity and structural stability of many proteins, and its deficiency can have severe consequences for microbial growth in natural and industrial environments. For example, Zn depletion in wort negatively affects beer fermentation and quality. Several studies have investigated yeast adaptation to low Zn supply, but were all performed in batch cultures, where specific growth rate depends on Zn availability. The transcriptional responses to growth-rate and Zn availability are then intertwined, which obscures result interpretation. In the present study, transcriptional responses of Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under Zn limitation and excess in chemostat culture. To investigate the context-dependency of this transcriptional response, yeast was grown under several chemostat regimes resulting in various carbon (glucose), nitrogen (ammonium) and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified and enabled the definition of a Zn-specific Zap1 regulon comprising of 26 genes and characterized by a broader ZRE consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large amount of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified.

Publication Title

Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE8088
Transcriptional responses of Saccharomyces cerevisiae to carbon limitation in aerobic chemostat cultures
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

Zinc is indispensable for the catalytic activity and structural stability of many proteins, and its deficiency can have severe consequences for microbial growth in natural and industrial environments. For example, Zn depletion in wort negatively affects beer fermentation and quality. Several studies have investigated yeast adaptation to low Zn supply, but were all performed in batch cultures, where specific growth rate depends on Zn availability. The transcriptional responses to growth-rate and Zn availability are then intertwined, which obscures result interpretation. In the present study, transcriptional responses of Saccharomyces cerevisiae to Zn availability were investigated at a fixed specific growth rate under Zn limitation and excess in chemostat culture. To investigate the context-dependency of this transcriptional response, yeast was grown under several chemostat regimes resulting in various carbon (glucose), nitrogen (ammonium) and oxygen supplies. A robust set of genes that responded consistently to Zn limitation was identified and enabled the definition of a Zn-specific Zap1 regulon comprising of 26 genes and characterized by a broader ZRE consensus (MHHAACCBYNMRGGT) than so far described. Most surprising was the Zn-dependent regulation of genes involved in storage carbohydrate metabolism. Their concerted down-regulation was physiologically relevant as revealed by a substantial decrease in glycogen and trehalose cellular content under Zn limitation. An unexpectedly large amount of genes were synergistically or antagonistically regulated by oxygen and Zn availability. This combinatorial regulation suggested a more prominent involvement of Zn in mitochondrial biogenesis and function than hitherto identified

Publication Title

Physiological and transcriptional responses of Saccharomyces cerevisiae to zinc limitation in chemostat cultures.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact