refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 673 results
Sort by

Filters

Technology

Platform

accession-icon GSE53537
Activation of Notch1 and Notch3 Skews Human Airway Basal Cell Differentiation Toward a Secretory Pathway
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Airway basal cells (BC) function as progenitor cells capable of differentiating into ciliated and secretory cells to replenish the airway epithelium during physiological turnover and repair. The objective of this study was to define the role of Notch signaling in regulating human airway BC differentiation into a pseudostratified mucociliated epithelium. Notch inhibition with -secretase inhibitors demonstrated Notch activation is essential for BC differentiation into secre-tory cells and ciliated cells, but more so for the secretory lineage. Sustained Notch activation via lentivirus expression of the intracellular domain of each Notch receptor (NICD1-4) demonstrated that the Notch 2 and 4 pathways have little effect on BC differentiation, while activation of the Notch1 or 3 pathways has a major influence, with persistent expression of NICD1 or 3 resulting in a skewing toward secretory cell differentiation with a parallel decrease in ciliated cell differentiation. These observations provide insights into the control of the balance of BC differentiation into the secretory vs ciliated cell lineage, a balance that is critical for maintaining the normal function of the airway epithelium in barrier defense against the inhaled environment.

Publication Title

Activation of NOTCH1 or NOTCH3 signaling skews human airway basal cell differentiation toward a secretory pathway.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE46995
Molecular signature with high accuracy for biliary atresia identifies a role for Interleukin-8 in pathogenesis of disease
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 110 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st), Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE46960
Comprehensive gene expression profile of human livers from patients with biliary atresia at the time of diagnosis and the corresponding disease and normal controls
  • organism-icon Homo sapiens
  • sample-icon 92 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Liver biopsy samples were obtained from 64 infants with biliary atresia at the time of intraoperative cholangiogram. Liver biopsy samples were obtained from 14 age-matched infants with other causes of intrahepatic cholestasis, and from 7 deceased-donor children. GeneChip Human Gene 1.0 ST Array (Affymetrix, CA) were used to screen mRNAs whose expression was specifically regulated in the livers from patients with biliary atresia.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE46967
Comprehensive gene expression profile of extrahepatic bile ducts in mice with experimental biliary atresia
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Newborn Balb/c mice were injected intraperitoneally with 1.5x10^6 fluorescent-forming units (ffu) of type- A Rhesus Rotavirus (RRV) or 0.9% normal saline (NS; control) within 24 hours of birth to induce experimental model of biliary atresia. Extrahepatic bile ducts including gallbladder were microdissected en bloc at 3, 7 and 14 days after RRV or saline injections. GeneChip Mouse Gene 1.0 ST Array (Affymetrix, CA) were used to screen mRNAs whose expression was differently regulated after RRV challenge compared to normal saline controls.

Publication Title

Gene expression signature for biliary atresia and a role for interleukin-8 in pathogenesis of experimental disease.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE76327
Role of OSGIN1 in Mediating Smoking-induced Autophagy in the Human Airway Epithelium
  • organism-icon Homo sapiens
  • sample-icon 187 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium.

Sample Metadata Fields

Specimen part, Race

View Samples
accession-icon GSE76324
Role of OSGIN1 in Mediating Smoking-induced Autophagy in the Human Airway Epithelium [array]
  • organism-icon Homo sapiens
  • sample-icon 187 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Enhanced autophagy is recognized as a component of the pathogenesis of smoking-induced airway disease. Based on the knowledge that enhanced autophagy is linked to oxidative stress and the DNA damage response, both of which are linked to smoking, we used microarray analysis of the small airway epithelium to identify smoking up-regulated genes known to re-spond to oxidative stress and the DNA damage response. This analysis identified OSGIN1 as significantly up-regulated by smoking in both the large and small airway epithelium (1.8-fold, p<0.01, 2.1-fold, p<10-4, respectively), an observation confirmed by an independent small airway microarray cohort, TaqMan PCR and RNAseq. Genome-wide correlation of RNAseq analysis of airway basal/progenitor cells isolated from healthy subjects (n=17) showed a direct correlation of OSGIN1 mRNA levels to multiple classic autophagy genes, including, LC3B, P62, WIPI1 and ATG13 (all rho>0.7, p<0.01). In vitro cigarette smoke extract exposure of nonsmoker primary airway basal/progenitor cells was accompanied by a dose-dependent up-regulation of OSGIN1 and autophagy induction. Lentivirus-mediated enhanced expression of OSGIN1 in human primary basal/progenitor cells induced puncta-like staining of LC3B and up-regulation of LC3B mRNA and protein and P62 mRNA expression level in a dose and time-dependent manner. OSGIN1-induction of autophagosome / amphistome / autolysosome formation was confirmed by co-localization of LC3B with P62 or CD63 (endosome marker) and LAMP1 (lysosome marker). Induction of autophagy by OSGIN1 is accompanied with heightened oxidative stress. Together, these observations support the concept that smoking-induced up-regulation of OSGIN1 is at least one link between smoking-induced stress and enhanced-autophagy in the human airway epithelium.

Publication Title

Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium.

Sample Metadata Fields

Specimen part, Race

View Samples
accession-icon SRP082973
Mandatory Role of HMGA1 in Human Airway Epithelial Normal Differentiation and Post-injury Regeneration
  • organism-icon Homo sapiens
  • sample-icon 64 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Background: High mobility group AT-hook1 (HMGA1) is essential for airway basal cell mucociliary differentiation, barrier integrity and wound repair. HMGA1 expression suppresses the abnormal basal cell differentiation to squamous, inflammatory and epithelial-mesenchymal transition phenotype commonly observed in association with cigarette smoking and chronic obstructive pulmonary disease (COPD). Results: HMGA1 knockdown experiments indicate that when HMGA1 expression is suppressed, the airway basal cells cannot normally differentiate into a mucociliary epithelium, form an intact barrier, and repair following injury. Instead, airway basal cell differentiation was skewed to an abnormal squamous EMT-like phenotype associated with airway remodeling in COPD. This study demonstrates that HMGA1 plays a key role in normal airway differentiation, regeneration of the normal airway epithelium following injury, and suppression of expression of genes related to squamous metaplasia, EMT and inflammation. Overall design: [RNA-seq] Non-smoker large airway epithelium cells, large airway basal cells, small airway epithelial cells, small airway basal cells. Smoker large airway basal cells, COPD smoker large airway basal cells,.

Publication Title

Mandatory role of HMGA1 in human airway epithelial normal differentiation and post-injury regeneration.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP067922
Role of OSGIN1 in Mediating Smoking-induced Autophagy in the Human Airway Epithelium [RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Enhanced autophagy is recognized as a component of the pathogenesis of smoking-induced airway disease. Based on the knowledge that enhanced autophagy is linked to oxidative stress and the DNA damage response, both of which are linked to smoking, we used microarray analysis of the small airway epithelium to identify smoking up-regulated genes known to re-spond to oxidative stress and the DNA damage response. This analysis identified OSGIN1 as significantly up-regulated by smoking in both the large and small airway epithelium (1.8-fold, p<0.01, 2.1-fold, p<10-4, respectively), an observation confirmed by an independent small airway microarray cohort, TaqMan PCR and RNAseq. Genome-wide correlation of RNAseq analysis of airway basal/progenitor cells isolated from healthy subjects (n=17) showed a direct correlation of OSGIN1 mRNA levels to multiple classic autophagy genes, including, LC3B, P62, WIPI1 and ATG13 (all rho>0.7, p<0.01). In vitro cigarette smoke extract exposure of nonsmoker primary airway basal/progenitor cells was accompanied by a dose-dependent up-regulation of OSGIN1 and autophagy induction. Lentivirus-mediated enhanced expression of OSGIN1 in human primary basal/progenitor cells induced puncta-like staining of LC3B and up-regulation of LC3B mRNA and protein and P62 mRNA expression level in a dose and time-dependent manner. OSGIN1-induction of autophagosome / amphistome / autolysosome formation was confirmed by co-localization of LC3B with P62 or CD63 (endosome marker) and LAMP1 (lysosome marker). Induction of autophagy by OSGIN1 is accompanied with heightened oxidative stress. Together, these observations support the concept that smoking-induced up-regulation of OSGIN1 is at least one link between smoking-induced stress and enhanced-autophagy in the human airway epithelium. Overall design: Airway epithelium transcriptome analysis suggested that OSGIN, an oxidative response and cell death induction gene, was up-regulated by cigarette smoking and might be involved in autophagy regulation. In vitro study demonstrated that smoking can increase OSGIN1 expression and enhanced-expression of OSGIN1 led to autophagy, which is accompanied with heightened oxidative stress.

Publication Title

Role of OSGIN1 in mediating smoking-induced autophagy in the human airway epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067913
JAG1 Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium
  • organism-icon Homo sapiens
  • sample-icon 50 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Background: Basal cells (BC) are the stem/progenitor cells of the human airway epithelium capable of differentiating into secretory and ciliated cells. Notch signaling activation increases BC differentiation into secretory cells, but the role of individual Notch ligands in regulating this process is unknown Results: The objective of this study was to define the role of the Notch ligand JAG1 in regulating BC differentiation. JAG1 over-expression in BC increased secretory cell differentiation, with no effect on ciliated cell differentiation. Conversely, knockdown of JAG1 decreased expression of secretory cell genes. Conclusions: These data demonstrate JAG1 mediated Notch signaling regulates differentiation of BC into secretory cells. This study demonstrates that expression of the Notch ligand JAG1 is highly enriched in basal stem/progenitor cells (BC) of the human airway epithelium and that modulation of its expression levels during differentiation of BC play an important role in regulating secretory cell differentiation with no effect on ciliated cell differentiation. These observations have implications for developing novel targets to specifically modulate levels of secretory cells in human airway disorders. Overall design: RNA sequencing of primary (Passage 0) and immortalized BC was performed on cells once they had reached 70-80% confluence. The 8 RNA-Seq samples in this submission were all normal, nonsmoker samples without any over-expression or knock-down. The 8 RNA-Seq samples show the BCiNS1.1 cell line samples to be similar to the primary basal cell (BC) samples.

Publication Title

JAG1-Mediated Notch Signaling Regulates Secretory Cell Differentiation of the Human Airway Epithelium.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24337
The Human Airway Epithelial Basal Cell Transcriptome
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Background. The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem / progenitor cells for the other airway cell types. The objective of this study is to better understand basal cell biology by defining the subset of expressed genes that characterize the signature of human airway epithelial basal cells.

Publication Title

The human airway epithelial basal cell transcriptome.

Sample Metadata Fields

Specimen part, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact