refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 314 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-515
Transcription profiling of diabetic neuropathy in dorsal root ganglia from streptozotocin-diabetic male wistar rats over the first 8 weeks of diabetes
  • organism-icon Rattus norvegicus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302), UNKNOWN

Description

A study of diabetic neuropathy in dorsal root ganglia from streptozotocin-diabetic male wistar rats over the first 8 weeks of diabetes

Publication Title

Identification of changes in gene expression in dorsal root ganglia in diabetic neuropathy: correlation with functional deficits.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage, Time

View Samples
accession-icon GSE61562
Murine Norovirus Effect on Cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Changes in gene expression on MNV infection of RAW264.7 cells

Publication Title

Murine norovirus replication induces G0/G1 cell cycle arrest in asynchronously growing cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP092584
PC1/3 deficiency impacts POMC processing in human embryonic stem cell-derived hypothalamic neurons
  • organism-icon Homo sapiens
  • sample-icon 89 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We developed a technique for generating hypothalamic neurons from human pluripotent stem cells. Here, as proof-of-principle, we examine the use of these cells in modeling of a monogenic form of severe obesity: PCSK1 deficiency. We generated PCSK1 (PC1/3)-deficient human embryonic stem cell (hESC) lines using both shRNA and CRISPR-Cas9, and investigated pro-opiomelanocortin (POMC) processing using hESC-differentiated hypothalamic neurons. Overall design: We tried to idenitify transcripitional profiles and specific transcription factors that involved in of different stages during hypothalamic neuron differentiation from single cell sequencing for hESC-derived Day27 hypothalamic neurons, Day 12 neuron progenitors and undifferentiated stem cells

Publication Title

PC1/3 Deficiency Impacts Pro-opiomelanocortin Processing in Human Embryonic Stem Cell-Derived Hypothalamic Neurons.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE35428
Transcriptional profiling of clinically relevant SERMs and SERM/estradiol complexes in a cellular model of breast cancer
  • organism-icon Homo sapiens
  • sample-icon 106 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In this study, we have utilized microarray analysis to directly compare a subset of structurally distinct, clinically relevant SERMs in the presence and absence of estradiol, using a high replicate number (10) to ensure detection of modestly regulated genes.

Publication Title

Research resource: Transcriptional profiling in a cellular model of breast cancer reveals functional and mechanistic differences between clinically relevant SERM and between SERM/estrogen complexes.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP049475
RNA-Seq Analysis in hES/ iPS cell-derived neuronal samples
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

We characterized the gene expression by Hierarchical Clustering and one-matrix clustering in hESC, day 12 progenitors, day 25-day 27, day82 differentiated hypothalamic neurons from hESCs and day 45 neurons derived from iPSCs generated from controls (2 independent) and BBS (Bardet-Biedl Syndrome, 3 independent) subjects. Overall design: RNA was isolated from cells of 13 samples (1 hESC, triplicate for day 12 progenitors, 1 day 25 neuron sample, duplicate for day 27 neuron samples, 1 day 82 neuron sample, five day 45 neuron samples made from 5 independent iPSC lines ) using RNeasy Micro Kit (QIAGEN). Quality control of the RNA was carried out with the Agilent Bio-analyzer, Qubit 2.0 at the MPSR of Columbia University. 100 ng of RNA with RIN = 9 were used for generating mRNA-focused libraries using TruSeq RNA Sample Preparation Kit v2 and sequencing on an Illumina 2000/2500 V3 Instrument offered by the Columbia Genome Center.

Publication Title

Differentiation of hypothalamic-like neurons from human pluripotent stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47346
Identification of differentially expressed genes due to LBH589 treatment in aromatase inhibitor-resistant tumors
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In order to validate the utility of a novel pathway algorithm (BD-Func), we test if an LBH589 signature based data from 3 cell lines (GSE36509) in an independent experiment in vivo.

Publication Title

BD-Func: a streamlined algorithm for predicting activation and inhibition of pathways.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE38053
Host Response Signature to Staphylococcus aureus alpha-Hemolysin
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Staphylococcus aureus pneumonia causes significant morbidity and mortality. Alpha-hemolysin (Hla), a pore-forming cytotoxin of S. aureus, has been identified through animal models of pneumonia as a critical virulence factor that induces lung injury. In spite of considerable molecular knowledge of how this cytotoxin injures the host, the precise host response to Hla in the context of infection remains poorly understood. We employed whole-genome expression profiling of infected lung to define the host response to wild-type S. aureus compared with an Hla-deficient isogenic mutant in experimental pneumonia. These data provide a complete expression profile at four and at twenty-four hours post-infection, revealing a unique response to the toxin-expressing strain. Gene ontogeny analysis revealed significant differences in the extracellular matrix and cardiomyopathy pathways, both of which govern cellular interactions in the tissue microenvironment. Evaluation of individual transcript responses to Hla-secreting bacteria was notable for upregulation of host cytokine and chemokine genes, including the p19 subunit of interleukin-23. Consistent with this observation, the cellular immune response to infection was characterized by a prominent TH17 response to wild-type staphylococci. These findings define specific host mRNA responses to Hla-producing S. aureus, coupling the pulmonary TH17 response to the presence of this cytotoxin. Expression profiling to define the host response to a single virulence factor proved to be a valuable tool in identifying pathways for further investigation in S. aureus pneumonia. This approach may be broadly applicable to the study of bacterial toxins, defining host pathways that can be targeted to mitigate toxin-induced disease.

Publication Title

Host response signature to Staphylococcus aureus alpha-hemolysin implicates pulmonary Th17 response.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE42310
COHCAP: City of Hope CpG Island Analysis Pipeline
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

COHCAP (City of Hope CpG Island Analysis Pipeline) is an algorithm to analyze single-nucleotide resolution DNA methylation data. It provides QC metrics, differential methylation for CpG Sites, differential methylation for CpG Islands, integration with gene expression data, and visualization of methylation values. COHCAP is currently the only DNA methylation package that can handle integration with gene expression data, and the results of this study show that COHCAP can identify regions of differential methylation with ~50% concordance with gene expression. COHCAP is scalable for analysis of both cell line data and heterogeneous patient data, and it can identify known cancer biomarkers as well as intriguing new roles of epigenetic regulation in cancer (such as methylation of estrogen receptor in breast cancer patients). This study also uses cell line data to show that COHCAP is capable of analyzing Illumina methylation array and targeted bisulfite sequencing data, with either 1-group or 2-group study designs. The accuracy of COHCAP is accessed using qPCR, EpiTect, and comparison of COHCAP regions of differential methylation with MIRA peaks. This software is freely available at https://sourceforge.net/projects/cohcap/.

Publication Title

COHCAP: an integrative genomic pipeline for single-nucleotide resolution DNA methylation analysis.

Sample Metadata Fields

Disease, Cell line

View Samples
accession-icon GSE42307
COHCAP HCT116 Mutant Comparison [expression]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Genome-wide expression and methylation differences are compared for a normal HCT116 cell line and a derived mutant with altered DNA methylation patterns.

Publication Title

COHCAP: an integrative genomic pipeline for single-nucleotide resolution DNA methylation analysis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE21578
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact