refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 314 results
Sort by

Filters

Technology

Platform

accession-icon GSE11189
IFN-g counteracts YopH mediated immune evasion in Yersinia enterocolitica infection in mice
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Background:

Publication Title

Role of IFN-gamma and IL-6 in a protective immune response to Yersinia enterocolitica in mice.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE9630
Expression data from mouse liver
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Exposure to high levels of arsenic in drinking water is associated with several types of cancers including lung, bladder and skin, as well as vascular disease and diabetes. Drinking water standards are based primarily on epidemiology and extrapolation from higher dose experiments, rather than measurements of phenotypic changes associated with chronic exposure to levels of arsenic similar to the current standard of 10ppb, and little is known about the difference between arsenic in food as opposed to arsenic in water. Measurement of phenotypic changes at low doses may be confounded by the effect of laboratory diet, in part because of trace amounts of arsenic in standard laboratory chows, but also because of broad metabolic changes in response to the chow itself. Finally, this series contrasts 8hr, 1mg/kg injected arsenic with the various chronic exposures, and also contrasts the acute effects of arsenic, dexamethasone or their combination. Male C57BL/6 mice were fed on two commercially available laboratory diets (LRD-5001 and AIN-76A) were chronically exposed, through drinking water or food, to environmentally relevant concentrations of sodium arsenite, or acutely exposed to dexamethasone.

Publication Title

Laboratory diet profoundly alters gene expression and confounds genomic analysis in mouse liver and lung.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71614
Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial
  • organism-icon Homo sapiens
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

The obese, insulin resistant state is characterized by impairments in lipid metabolism. Dietary polyphenols might improve these deteriorations. We have previously shown that 3-days supplementation of combined Epigallocatechin-gallate and Resveratrol (E+R) increased energy expenditure, which was accompanied by improved metabolic flexibility after a high-fat mixed-meal (HFMM) in men. The present study aimed to investigate whether these short-term effects translate into longer-term improvement of insulin sensitivity and lipid metabolism. In this randomized, double-blind study, 42 overweight subjects (21 male, 382 yrs, BMI 29.70.5 kg/m2, HOMA-IR 2.10.2) received either E+R (300 and 80 mg/d, respectively) or placebo (PLA) for 12 weeks (3 months). Before (t0) and after (t3) intervention, tissue-specific insulin sensitivity was assessed by a hyperinsulinemic-euglycemic clamp with stable isotope infusion. Fasting and postprandial (HFMM) lipid metabolism was assessed using indirect calorimetry and blood sampling. Adipose tissue and skeletal muscle lipolysis was measured using microdialysis in men and skeletal muscle biopsies were collected to assess mitochondrial function and gene expression alterations via microarray analysis. E+R supplementation increased fasting (P=0.06) and postprandial (P=0.03) fat oxidation but did not alter energy expenditure compared to PLA. This was accompanied by an E+R-induced increase in oxidative capacity in permeabilized muscle fibers (p<0.05). Moreover, E+R supplementation attenuated the increase in plasma triacylglycerol concentration that was observed in the PLA group (AUC, p<0.05), and tended to decrease visceral fat mass (P=0.09). Finally, insulin-stimulated glucose disposal and suppression of endogenous glucose production were not affected by E+R supplementation. 12 weeks E+R supplementation increased whole-body fat oxidation and skeletal muscle oxidative capacity, but this did not translate into increased tissue-specific insulin sensitivity in overweight and obese subjects.

Publication Title

Combined epigallocatechin-3-gallate and resveratrol supplementation for 12 wk increases mitochondrial capacity and fat oxidation, but not insulin sensitivity, in obese humans: a randomized controlled trial.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE23417
Differential expression of E.coli mar/rob/soxS triple mutant and wild type in a mouse model of pyelonephritis
  • organism-icon Escherichia coli
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Mutation of marA, rob, and soxS causes a clinical strain of E.coli to be attenuated at d3 post-infection in a mouse model of pyelonephritis, here we extract RNA at d2 post infection to analyze transcriptional differences between the two strains.

Publication Title

SoxS increases the expression of the zinc uptake system ZnuACB in an Escherichia coli murine pyelonephritis model.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE45382
Gene expression in tolerogenic TGFb-treated macrophages
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

F4/80+ macrophages treated with TGFb2 are potently tolerogenic. Our understanding of the molecular mechanisms mediating the development of these tolerogenic properties is incomplete.

Publication Title

FcγRI is required for TGFβ2-treated macrophage-induced tolerance.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE35766
Identification of the cortical neurons that mediate antidepressant responses
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35758
Comparative analysis of S100a10 and Glt25d2 cortical pyramidal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35751
Comparative analysis of S100a10-expressing cortical pyramidal cells and whole cortex
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35761
Effect of fluoxetine treatment on translational profiles of S100a10 cortical pyramidal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE35763
Effect of fluoxetine treatment on translational profiles of Glt25d2 cortical pyramidal cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Molecular phenotyping of cell types and neural circuits underlying pathological neuropsychiatric conditions and their responses to therapy provides one avenue for the development of more specific and effective treatments. In this study, we identify a cell population in the cerebral cortex that shows robust and specific molecular adaptations following long-term SSRI treatment.

Publication Title

Identification of the cortical neurons that mediate antidepressant responses.

Sample Metadata Fields

Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact