refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 955 results
Sort by

Filters

Technology

Platform

accession-icon GSE6055
Gene Expression Profiling Reveals Unique Pathways Associated with Differential Severity of Lyme Arthritis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The murine model of Lyme disease provides a unique opportunity to study the localized host response to similar stimulus, B. burgdorferi, in the joints of mice destined to develop severe arthritis (C3H) or mild disease (C57BL/6). Pathways associated with the response to infection and the development of Lyme arthritis were identified by global gene expression patterns using oligonucleotide microarrays. A robust induction of IFN responsive genes was observed in severely arthritic C3H mice at one week of infection, which was absent from mildly arthritic C57BL/6 mice. In contrast, infected C57BL/6 mice displayed a novel expression profile characterized by genes involved in epidermal differentiation and wound repair, which were decreased in the joints of C3H mice. These expression patterns were associated with disease state rather than inherent differences between C3H and C57BL/6 mice, as C57BL/6-IL10-/- mice infected with B. burgdorferi develop more severe arthritis that C57BL/6 mice and displayed an early gene expression profile similar to C3H mice. Gene expression profiles at two and four weeks post infection revealed a common response of all strains that was likely to be important for the host defense to B. burgdorferi and mediated by NF-kB-dependent signaling. The gene expression profiles identified in this study add to the current understanding of the host response to B. burgdorferi and identify two novel pathways that may be involved in regulating the severity of Lyme arthritis.

Publication Title

Gene expression profiling reveals unique pathways associated with differential severity of lyme arthritis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE16195
Expression profiling of joint tissue from C3H and interval specific congenic mouse lines post- B. burgdorferi infection
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression profile of joint tissue from C3H and interval specific congenic mouse lines (ISCL) following infection with Borrelia burgdorferi

Publication Title

Interval-specific congenic lines reveal quantitative trait Loci with penetrant lyme arthritis phenotypes on chromosomes 5, 11, and 12.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP065478
Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4+ regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4+ regulatory T cells but effector CD8a+ and CD4+ conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology. Overall design: GFP- CD3e+ CD8a+ CD4-, GFP- CD3e+ CD8a- CD4+ CD25- and GFP- CD3e+ CD8a- CD4+ CD25+ T cells were isolated from spleens of UBC-GFP mice transplanted with WT or cDKO lineage-depleted donor bone marrow following lethal irradiation of recipient mice. RNA-seq was performed on 3-4 biological replicates from each genotype for all T cell populations analyzed.

Publication Title

Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon E-TABM-1007
Transcription profiling by array of Arabidopsis mutant for fis2
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

At 3 days after pollination, RNA was extracted from seeds of WT and fis2 mutants, labeled and hybridized to ATH1 arrays.

Publication Title

H3K27me3 profiling of the endosperm implies exclusion of polycomb group protein targeting by DNA methylation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE78202
Placental protein-1 (Plac1) modulates immune tolerance in mammary tumor cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Plac1 is an X-linked (Xq26) trophoblast gene expressed at high levels in the placenta, at low levels in the testis, but not in other normal somatic tissues. However, it is re-expressed in several malignancies, including breast, colon, lung, gastric, liver and endometrial cancers as well as in most human cancer cell lines. Plac1 contains HLA-A2-restricted epitopes capable of eliciting a cytotoxic T lymphocyte (CTL) response against human breast cancer cells, and colorectal cancer patients with a Plac1-specific CTL response demonstrate long-term survival. To explore the role of Plac1 in cancer, mouse mammary tumor E0771 cells expressing high levels of Plac1 were transduced with a lentivirus expressing a Plac1 shRNA (E0771/shPlac1).

Publication Title

Plac1 Is a Key Regulator of the Inflammatory Response and Immune Tolerance In Mammary Tumorigenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE69518
The lncRNA HOTAIR Modulates DNA-Methylation in Mesenchymal Stem Cells via Triple Helix Formation
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Illumina HumanMethylation450 BeadChip (HumanMethylation450_15017482)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE69492
The lncRNA HOTAIR Modulates DNA-Methylation in Mesenchymal Stem Cells via Triple Helix Formation (expression)
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanMethylation450 BeadChip (HumanMethylation450_15017482), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Long non coding RNAs are implemented in epigenetic changes and regulation of gene expression. HOTAIR is a promising lncRNA concerning epigenetic regulation. We performed HOTAIR overexpression and knockdown experiments in mesenchymal stromal cells derived from bone marrow. After two weeks cells were harvested and RNA and DNA were isolated. Analysis of gene expression was performed with Human Gene 2.0 ST Array (Affymetrix, Santa Clara, USA). Analysis of DNA methylation was performed with Infinium HumanMethylation450 BeadChips (Illumina, San Diego, USA)

Publication Title

The lncRNA HOTAIR impacts on mesenchymal stem cells via triple helix formation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP133615
The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression [ELL2 rescue]
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To understand the biological mechanism of ELL2 in multiple myeloma (MM), we show that the MM risk allele lowers ELL2 expression in CD138+ plasma cells (Pcombined=2.5×10-27; bcombined=-0.24 s.d.), but not in peripheral blood or other tissues. Consistent with this, several variants representing the MM risk allele map to regulatory genomic regions, and three yield reduced transcriptional activity in plasmocytoma cell lines. One of these (rs3777189-C) co-locates with the best-supported lead variants for ELL2 expression and MM risk, and reduces binding of MAFF/G/K family transcription factors. Moreover, further analysis reveals that the MM risk allele associates with upregulation of gene sets related to ribosome biogenesis, and knockout/knockdown and rescue experiments in plasmocytoma cell lines support a cause-effect relationship. Overall design: Reconstitution of ELL2 expression in L363-ELL2-knockout cells

Publication Title

The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Cell line, Treatment, Subject

View Samples
accession-icon SRP133591
The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression [ELL2 KO]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To understand the biological mechanism of ELL2 in multiple myeloma (MM), we show that the MM risk allele lowers ELL2 expression in CD138+ plasma cells (Pcombined=2.5×10-27; bcombined=-0.24 s.d.), but not in peripheral blood or other tissues. Consistent with this, several variants representing the MM risk allele map to regulatory genomic regions, and three yield reduced transcriptional activity in plasmocytoma cell lines. One of these (rs3777189-C) co-locates with the best-supported lead variants for ELL2 expression and MM risk, and reduces binding of MAFF/G/K family transcription factors. Moreover, further analysis reveals that the MM risk allele associates with upregulation of gene sets related to ribosome biogenesis, and knockout/knockdown and rescue experiments in plasmocytoma cell lines support a cause-effect relationship. Overall design: knock out ELL2 in L363 cells using CRISPR-Cas9

Publication Title

The multiple myeloma risk allele at 5q15 lowers ELL2 expression and increases ribosomal gene expression.

Sample Metadata Fields

Disease, Disease stage, Cell line, Subject

View Samples
accession-icon GSE3407
Cockayne syndrome (CSB) fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Cockayne syndrome (CS) is an inherited neurodevelopmental disorder with progeroid features. Although the genes responsible for CS have been implicated in a variety of DNA repair- and transcription-related pathways, the nature of the molecular defect in CS remains mysterious. We sought to define this defect by expression analysis of cells lacking functional CSB, a SWI/SNF-like ATPase that is responsible for most CS cases.

Publication Title

Cockayne syndrome group B protein (CSB) plays a general role in chromatin maintenance and remodeling.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact