refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 330 results
Sort by

Filters

Technology

Platform

accession-icon GSE8745
Low R:FR treatment at 16 and 22 degrees
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The purpose of this experiment was to identify genes responding differently to a 24 h low red to far red ratio (R:FR) treatment in plants grown at 16 and 22 degrees

Publication Title

Light-quality regulation of freezing tolerance in Arabidopsis thaliana.

Sample Metadata Fields

Age

View Samples
accession-icon E-MEXP-34
Transcription profiling time course experiment performed over 24 hours to look at the effects on gene expression of exposure to low red:far-red ratio light in Arabidopsis thaliana plants
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis Genome Array (ag)

Description

This experiment was a time course performed over 24 hours to look at the effects on gene expression of exposure to low red:far-red ratio light in Arabidopsis thaliana plants. In this way genes involved in the shade avoidance response might be identified. This experiment was designed for gene identification only and containes no replicates,genes identified were verified by quantitative PCR for publication.

Publication Title

Gating of the rapid shade-avoidance response by the circadian clock in plants.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Subject

View Samples
accession-icon GSE23115
Postnatal Growth Restriction and Gene Expression Changes in a Mouse Model of Fetal Alcohol Syndrome
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE23105
Postnatal Growth Restriction and Gene Expression Changes in a Mouse Model of Fetal Alcohol Syndrome (Kidney)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Growth restriction, craniofacial dysmorphology and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal and/or postnatal, but the underlying mechanisms remain unknown. We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome, e.g. craniofacial changes and growth restriction in adolescent mice. Here we further characterize the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of non-fostered ethanol-exposed and control mice at postnatal day 28. We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiological result of ethanol exposure in utero. We also find that, despite some catch-up growth after five weeks of age, the effect extends into adulthood, consistent with longitudinal studies in humans. Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis and lipid metabolism.

Publication Title

Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE23106
Postnatal Growth Restriction and Gene Expression Changes in a Mouse Model of Fetal Alcohol Syndrome (Liver)
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Growth restriction, craniofacial dysmorphology and central nervous system defects are the main diagnostic features of fetal alcohol syndrome. Studies in humans and mice have reported that the growth restriction can be prenatal and/or postnatal, but the underlying mechanisms remain unknown. We recently described a mouse model of moderate gestational ethanol exposure that produces measurable phenotypes in line with fetal alcohol syndrome, e.g. craniofacial changes and growth restriction in adolescent mice. Here we further characterize the growth restriction phenotype by measuring body weight at gestational day 16.5, cross-fostering from birth to weaning, and extending our observations into adulthood. Furthermore, in an attempt to unravel the molecular events contributing to the growth phenotype, we have compared gene expression patterns in the liver and kidney of non-fostered ethanol-exposed and control mice at postnatal day 28. We find that the ethanol-induced growth phenotype is not detectable prior to birth, but is present at weaning, even in mice that have been cross-fostered to unexposed dams. This suggests a postnatal growth restriction phenotype that is not due to deficient postpartum care by dams that drank ethanol, but rather a physiological result of ethanol exposure in utero. We also find that, despite some catch-up growth after five weeks of age, the effect extends into adulthood, consistent with longitudinal studies in humans. Genome-wide gene expression analysis revealed interesting ethanol-induced changes in the liver, including genes involved in the metabolism of exogenous and endogenous compounds, iron homeostasis and lipid metabolism.

Publication Title

Postnatal growth restriction and gene expression changes in a mouse model of fetal alcohol syndrome.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE21966
Transcriptional profiling of P. aeruginosa isolated from 3 individuals with cystic fibrosis over time
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Pseudomonas aeruginosa chronically colonizes the lungs of individuals with CF, where it reaches high cell densities and produces a battery of virulence factors. Upon infection, a single strain of P. aeruginosa can colonize an individuals lungs throughout his or her lifetime. To understand the evolution of P. aeruginosa during chronic lung infection, we conducted both genotypic and phenotypic analyses on clinical isogenic strains obtained from the lungs of three different individuals with CF. These strains were isolated over a period of approximately ten years and possess phenotypes that are commonly observed in isolates from the CF lung, such as the antibiotic resistant dwarf and mucoid phenotypes. Microarray analyses were carried out on isolates grown in a chemically defined medium that mimics the nutritional environment of the CF lung, synthetic CF sputum medium (SCFM).

Publication Title

Parallel evolution in Pseudomonas aeruginosa over 39,000 generations in vivo.

Sample Metadata Fields

Time

View Samples
accession-icon GSE26931
Mixed Culture Gene Expression of E. coli and Pseudomonas aeruginosa
  • organism-icon Escherichia coli, Pseudomonas aeruginosa pao1
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Transcriptional profiles of Escherichia coli MG1655 in mixed culture with Pseudomonas aeruginosa PAO1 showed a number of E. coli genes to be upregulated including purA-F and other genes associated with purine synthesis. In contrast, genes associated with pyrimidine synthesis were unaffected. Competition experiments in both planktonic and biofilm cultures, using three purine synthesis mutants, purD, purH, and purT showed little difference in E. coli survival from the parent strain. As purines are components of the cell signals, cAMP and c-di-GMP, we conducted competition experiments with E. coli mutants lacking adenylate cyclase (cyaA), cAMP phosphodiesterase (cpdA), and the catabolite receptor protein (crp), as well as ydeH, an uncharacterized gene that has been associated with c-di-GMP synthesis. Survival of the cyaA and crp mutants during co-culture were significantly less than the parent strain. Supplementation of the media with 1mM cAMP could restore survival of the cyaA mutant but not the crp mutant. In contrast, survival of the cpdA mutant was similar to the parent strain. Survival of the ydeH mutant was moderately less than the parent, suggesting that cAMP has more impact on E. coli mixed culture growth than c-di-GMP. Addition of 1 mM indole restored the survival of both the cyaA and crp mutations. Mutants in genes for tryptophan synthesis (trpE) and indole production (tnaA) showed a loss of competition and recovery through indole supplementation, comparable to the cyaA and crp mutants. Overall, these results suggest indole and cAMP as major contributing factors to E. coli growth in mixed culture.

Publication Title

Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE26932
Mixed Culture Gene Expression of E. coli and Pseudomonas aeruginosa grown on defined media with N-acetyl glucosamine
  • organism-icon Escherichia coli str. k-12 substr. mg1655, Pseudomonas aeruginosa pao1
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Transcriptional profiles of Escherichia coli MG1655 in mixed culture with Pseudomonas aeruginosa PAO1 showed a number of E. coli genes to be upregulated including purA-F and other genes associated with purine synthesis. In contrast, genes associated with pyrimidine synthesis were unaffected. Competition experiments in both planktonic and biofilm cultures, using three purine synthesis mutants, purD, purH, and purT showed little difference in E. coli survival from the parent strain. As purines are components of the cell signals, cAMP and c-di-GMP, we conducted competition experiments with E. coli mutants lacking adenylate cyclase (cyaA), cAMP phosphodiesterase (cpdA), and the catabolite receptor protein (crp), as well as ydeH, an uncharacterized gene that has been associated with c-di-GMP synthesis. Survival of the cyaA and crp mutants during co-culture were significantly less than the parent strain. Supplementation of the media with 1mM cAMP could restore survival of the cyaA mutant but not the crp mutant. In contrast, survival of the cpdA mutant was similar to the parent strain. Survival of the ydeH mutant was moderately less than the parent, suggesting that cAMP has more impact on E. coli mixed culture growth than c-di-GMP. Addition of 1 mM indole restored the survival of both the cyaA and crp mutations. Mutants in genes for tryptophan synthesis (trpE) and indole production (tnaA) showed a loss of competition and recovery through indole supplementation, comparable to the cyaA and crp mutants. Overall, these results suggest indole and cAMP as major contributing factors to E. coli growth in mixed culture.

Publication Title

Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP065478
Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs
  • organism-icon Mus musculus
  • sample-icon 23 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4+ regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4+ regulatory T cells but effector CD8a+ and CD4+ conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology. Overall design: GFP- CD3e+ CD8a+ CD4-, GFP- CD3e+ CD8a- CD4+ CD25- and GFP- CD3e+ CD8a- CD4+ CD25+ T cells were isolated from spleens of UBC-GFP mice transplanted with WT or cDKO lineage-depleted donor bone marrow following lethal irradiation of recipient mice. RNA-seq was performed on 3-4 biological replicates from each genotype for all T cell populations analyzed.

Publication Title

Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE13155
Comparison of mouse placental labyrinth and human villus tree
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An important question for the use of the mouse as a model for studying human disease is the degree of functional conservation of genetic control pathways from human to mouse. The human placenta and mouse placenta show structural similarities but there has been no systematic attempt to assess their molecular similarities or differences. We built a comprehensive database of protein and microarray data for the highly vascular exchange region micro-dissected from the human and mouse placenta near-term. Abnormalities in this region are associated with two of the most common and serious complications of human pregnancy, maternal preeclampsia (PE) and fetal intrauterine growth restriction (IUGR), each disorder affecting ~5% of all pregnancies.

Publication Title

Comparative systems biology of human and mouse as a tool to guide the modeling of human placental pathology.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact