refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 97 results
Sort by

Filters

Technology

Platform

accession-icon SRP063901
The binding specificity and regulatory effect of WT and redesigned Puf2p [RNA-Seq]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

PUF proteins have become a leading scaffold for designing RNA-binding proteins to contact and control RNAs at will. We analyze the effects of that reengineering across the transcriptome in vivo for the first time. We show, by HITS-CLIP and PAR-CLIP, that S. cerevisiae Puf2p, a non-canonical PUF protein, binds more than 1000 mRNA targets. Puf2p binds multiple UAAU elements, unlike canonical PUF proteins. We also perform CLIP-seq on truncations of Puf2p, showing that its prion domain is dispensable for WT binding. We design a modified Puf2p to bind UAAG rather than UAAU, which allows us to align the protein with the binding site. In vivo, the redesigned protein binds UAAG sites. Its altered specificity redistributes the protein away from 3'UTRs, such that the protein tracks with its sites and binds throughout the mRNA. We use RNA-seq to determine that R1 SNE Puf2p represses a novel RNA network.  Overall design: CLIP-seq was performed in BY4742 S. cerevisiae grown in log phase, and using 2 replicates of TAP-tagged proteins. RNA-seq was performed to determine the regulatory effect of WT or mutant Puf2p, using 4 replicates of the control (no Puf2p), 3 of WT Puf2p and 4 of R1 SNE Puf2p.

Publication Title

Target selection by natural and redesigned PUF proteins.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP058313
RNA sequencing of ILK-deficient hair follicle bulge stem cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We sequenced mRNA from FACS purified hair follicle bulge stem cells from 21 d old control and ILK-deficient mice, 3 biological replicates each Overall design: Examination of mRNA levels in control and ILK-deficient hair follicle bulge stem cells

Publication Title

Integrin-linked kinase regulates the niche of quiescent epidermal stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP132018
In-vitro stimulation of healthy donor blood with IL-3 cytokine
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

This experiment was designed to look for in vitro IL-3 gene signature in donor blood at two different time points (6 and 24 hours). RNA from lysed whole blood cells was used for the sequencing. Overall design: Lysed whole blood from seven healthy donors was stimulated with recombinant human IL-3 for 6 hours, or 24 hours, prior to RNA extraction for next-generation sequencing on the Illumina HiSeq platform. Unstimulated samples were included as controls.

Publication Title

A potential association between IL-3 and type I and III interferons in systemic lupus erythematosus.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Treatment, Subject, Time

View Samples
accession-icon GSE56365
Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fueled matrix metalloproteinase production
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

In addition to satisfying the metabolic demands of cells, mitochondrial metabolism helps regulate immune cell function. To date, such cell-intrinsic metabolic-immunologic cross-talk has only been described operating in cells of the immune system. Here we show that epidermal cells utilize fatty acid -oxidation to fuel their contribution to the immune response during cutaneous inflammation. By live imaging metabolic and immunological processes within intact zebrafish embryos during cutaneous inflammation, we uncover a mechanism where elevated -oxidation-fueled mitochondria-derived reactive oxygen species within epidermal cells helps guide matrix metalloproteinase-driven leukocyte recruitment. This mechanism requires the activity of a zebrafish homolog of the mammalian mitochondrial enzyme, Immunoresponsive gene 1. This study describes the first example of metabolic reprogramming operating within a non-immune cell type to help control its contribution to the immune response. Targeting of this metabolic-immunologic interface within keratinocytes may prove useful in treating inflammatory dermatoses.

Publication Title

Epidermal cells help coordinate leukocyte migration during inflammation through fatty acid-fuelled matrix metalloproteinase production.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE26403
Gene therapy of Mpl -/- mouse LSK cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Comparison of Mpl-/- mouse LSK cells, either treated with control (GFP) or Mpl lentivirus. Lineage negative bone marrow cells were isolated and transduced and transplanted into Mpl-/- recipient mice. After transplantation and follow up mice were sacrificed and LSK (lineage negative, Sca-1 positive, cKit positive) cells were isolated by FACS. RNA was isolated using RNeasy Micro Kit (Qiagen GmbH, Hilden, Germany) and RNA was amplified for microarray hybridization using the Nugen Ovation system (Nugen Technologies, AC Bemmel, Netherlands). The resulting material was hybridized to Affymetrix Mouse 430 2.0 arrays. RMA normalization and summarization was performed in R 2.10 using Bioconductor packages. The aim was to show the normalization of Mpl associated gene expression.

Publication Title

Lentiviral gene transfer regenerates hematopoietic stem cells in a mouse model for Mpl-deficient aplastic anemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP161856
RNA-seq expression profiling of cardiac macrophages and splenic monocytes from naïve and CAWS challenged mice
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

The adult heart contains macrophages derived from both embryonic and adult bone-marrow derived precursors. Such population diversity raises the possibility that macrophages of distinct origins occupy differing biological roles or anatomical niches within the heart. Here, we provide evidence for the latter, showing that bone-marrow derived macrophages express the chemokine receptor Ccr2 and preferentially localise to the aortic root of the heart. This targeted migration occurs via a Ccr2-Ccl7 axis, whereby Ccl7-producing cardiac fibroblasts populating the aortic root, recruit Ccr2pos macrophages. Notably, the selective recruitment of Ccr2pos macrophages renders the aortic root sensitive to inflammatory disease. In a mouse model of Kawasaki Disease, acute inflammation drives a numerical increase in bone-marrow derived Ccr2pos macrophages, which accumulate at the aorta and trigger local inflammation at this site. We propose that cardiac fibroblasts recruit Ccr2pos macrophages to the aortic root, and that this process targets inflammatory disease to the heart's major vessels. Overall design: Mice were either naïve or challenged with a Candida albicans water-soluble complex (CAWS) to induce a mouse model of Kawasaki Disease. Cardiac macrophages were extracted from three independent pools of naive mice and three independent pools of CAWS challenged mice. Splenic monocytes were extracted from three independent pools of naive mice. In each case, cardiac macrophages were divided into three subpopulations (R1, R2 and R3) based on Ccr2 and MHC-II expression.

Publication Title

The Selective Expansion and Targeted Accumulation of Bone Marrow-Derived Macrophages Drive Cardiac Vasculitis.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP071837
Stimulation of isolated plasmacytoid dendritic cells (pDCs) with TLR9 agonist CpG C (CpG) and TLR7 agonist imiquimod (IMQ)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

The purpose of this experiment was to assess the genes upregulated when pDCs were stimulated with TLR7 agonist imiquimod and TLR9 agonist CpG C. Overall design: pDCs were isolated from six healthy donors by FACS sorting, and were stimulated with CpG and imiquimod for 18 hours, after which RNA was extracted for next generation sequencing on the Illumina HiSeq platform. Unstimulated samples were included as controls.

Publication Title

A cytotoxic anti-IL-3Rα antibody targets key cells and cytokines implicated in systemic lupus erythematosus.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE24027
PCPTC screening
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Primary cultures of patient tumor cells (PCPTC) were used in a cell-based cytotoxicity screen. Microarray-based mRNA profiling was used to identify the mechanism-of-action for the small molecule VLX 50.

Publication Title

Phenotype-based drug screening in primary ovarian carcinoma cultures identifies intracellular iron depletion as a promising strategy for cancer treatment.

Sample Metadata Fields

Specimen part, Disease, Cell line, Treatment

View Samples
accession-icon GSE24849
Human CD34+-derived erythoblast (polychromatophilic and orthochromatic) response to co-culture with Plasmodium falciparum 3D7
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Global, genomic responses of erythrocytes to infectious agents have been difficult to measure, because these cells are e-nucleated. We have previously demonstrated that in vitro matured, nucleated erythroblast cells at the orthochromatic stage can be efficiently infected by the human malaria parasite Plasmodium falciparum. We now show that infection of orthochromatic cells induces change in 609 host genes. 592 of these transcripts are up-regulated and associated with metabolic and chaperone pathways unique to P. falciparum infection, as well as a wide range of signaling pathways that are also induced in related apicomplexan infections of mouse hepatocytes or human fibroblast cells. Our data additionally show that polychromatophilic cells, which precede the orthochromatic stage and are not infected when co-cultured with P. falciparum, up-regulate a small set of 35 genes, 9 of which are associated with pathways of hematopoiesis and/or erythroid cell development. These data unexpectedly predict that blood stage P. falciparum may induce host responses common to infections of other pathogens. Further P. falciparum may modulate gene expression in bystander erythroblasts and thus influence pathways of erythrocyte development.

Publication Title

P. falciparum modulates erythroblast cell gene expression in signaling and erythrocyte production pathways.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE49893
RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

RNA-Seq and expression microarray highlight different aspects of the fetal amniotic fluid transcriptome.

Sample Metadata Fields

Sex

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact