refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 215 results
Sort by

Filters

Technology

Platform

accession-icon GSE23008
Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mice with the two calcium-stmulated adenylyl cyclase isoforms (AC1 and AC8; DKO mice) knocked-out show conditioned fear memory deficits. We assessed gene expression changes at baseline and several time points after conditioned fear learning to assess transcriptional changes at different stages of learning. Transcriptional changes were assessed in the amydgdala and hippocampus of DKO and wild-type mice.

Publication Title

Temporal and regional regulation of gene expression by calcium-stimulated adenylyl cyclase activity during fear memory.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE42892
Microarray Analysis of a Familial Hypertrophic Cardiomyopathy Mouse Model Rescued by a Phospholamban Knockout
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Familial hypertrophic cardiomyopathy (FHC) is a disease characterized by ventricular hypertrophy, fibrosis, and aberrant systolic and/or diastolic function. Our laboratories have previously developed 2 mouse models that affect cardiac performance. One transgenic mouse model encodes an FHC-associated mutation in -tropomyosin (Tm180) that displays severe cardiac hypertrophy with fibrosis and impaired physiological performance. The other model was a gene knockout of phospholamban (PLB), a regulator of calcium uptake in the sarcoplasmic reticulum of cardiomyocytes; the hearts of these mice exhibit hypercontractility with no pathological abnormalities. Previous work in our laboratories show that the hearts of mice that were genetically crossed between the Tm180 and PLB KO mice rescues the hypertrophic phenotype and improves their cardiac morphology and function.

Publication Title

Microarray analysis of active cardiac remodeling genes in a familial hypertrophic cardiomyopathy mouse model rescued by a phospholamban knockout.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE15061
Gene array prediction of AML transformation in MDS
  • organism-icon Homo sapiens
  • sample-icon 431 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome (MDS)

Publication Title

Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of AML transformation of myelodysplastic syndrome.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon GSE9493
Transcriptomic analyses of renal allograft biopsies reveal conserved rejection signatures and molecular pathways
  • organism-icon Homo sapiens
  • sample-icon 80 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the subseries listed below.

Publication Title

Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE9489
Analyses of heterogeneous renal allograft biopsies reveal conserved rejection signatures and molecular pathways I
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining molecular Banff signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set comprises all renal allograft biopsies for clinical indications from patients at Hpital Tenon, Paris (February 2003 until September 2004) and few respective patients from Hpital Bictre, Paris, Hpital Pellegrin, Bordeaux, and Hpital Dupuytren, Limoges, plus control normal kidney samples from Hpital Tenon, Paris, France (first batch).

Publication Title

Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE17861
Analyses of heterogeneous renal allograft biopsies reveal conserved rejection signatures and molecular pathways I, partB
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Specific early diagnosis of renal allograft rejection is gaining importance in the current trend to minimize and individualize immunosuppression. Gene expression analyses could contribute significantly by defining molecular Banff signatures. Several previous studies have applied transcriptomics to distinguish different classes of kidney biopsies. However, the heterogeneity of microarray platforms, clinical samples and data analysis methods complicates the identification of robust signatures for the different types and grades of rejection. To address these issues, a comparative meta-analysis was performed across five different microarray datasets of heterogeneous sample collections from two published clinical datasets and three own datasets including biopsies for clinical indications, protocol biopsies, as well as comparative samples from non-human primates (NHP). This work identified conserved gene expression signatures that can differentiate groups with different histopathological findings in both human and NHP, regardless of the technical platform used. The marker panels comprise genes that clearly support the biological changes known to be involved in allograft rejection. A characteristic dynamic expression change of genes associated with immune and kidney functions was observed across samples with different grades of CAN. In addition, differences between human and NHP rejection were essentially limited to genes reflecting interstitial fibrosis progression. This data set comprises all renal allograft biopsies for clinical indications from patients at Hpital Tenon, Paris (February 2003 until September 2004) and few respective patients from Hpital Bictre, Paris, Hpital Pellegrin, Bordeaux, and Hpital Dupuytren, Limoges, plus control normal kidney samples from Hpital Tenon, Paris, France (first batch).

Publication Title

Analysis of independent microarray datasets of renal biopsies identifies a robust transcript signature of acute allograft rejection.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon SRP044181
Impaired DNA damage metabolism promotes autoimmunity in TREX1 deficiency 
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Constitutive low level DNA damage is linked to innate immune activation. Hierarchical clustering of over 9000 transcripts revealed remarkably similar profiles in a patient with lupus erythematosus and a patient with AGS with up-regulation of genes involved in DNA damage signaling, p53-inducible genes, senescence-associated genes as well as up-regulation of interferon-stimulated genes. Transcriptional profiling of fibroblasts exposed to oxidative stress showed a marked up-regulation of genes involved in DNA replication/repair and replication licensing in TREX1-deficient cells compared to wild type cells suggesting massive replication stress. Overall design: Comparison of transcriptional profiles of unstressed patient fibroblasts with wild type cells as well as fibroblasts exposed to oxidative stress

Publication Title

RPA and Rad51 constitute a cell intrinsic mechanism to protect the cytosol from self DNA.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13204
Microarray Innovations in LEukemia (MILE) study
  • organism-icon Homo sapiens
  • sample-icon 1492 Downloadable Samples
  • Technology Badge Icon

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13159
Microarray Innovations in LEukemia (MILE) study: Stage 1 data
  • organism-icon Homo sapiens
  • sample-icon 357 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An International Multi-Center Study to Define the Clinical Utility of MicroarrayBased Gene Expression Profiling in the Diagnosis and Sub-classification of Leukemia (MILE Study)

Publication Title

An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE11135
The MILE (Microarray Innovations In LEukemia) study pre-phase
  • organism-icon Homo sapiens
  • sample-icon 204 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

An international standardization program towards the application of gene expression profiling in routine leukaemia diagnostics: The MILE study pre-phase.

Publication Title

An international standardization programme towards the application of gene expression profiling in routine leukaemia diagnostics: the Microarray Innovations in LEukemia study prephase.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact