refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 215 results
Sort by

Filters

Technology

Platform

accession-icon GSE9200
Feedback Circuit among INK4 Tumor Suppressors Constrains Human Glioblastoma Development
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18INK4C and p16INK4A codeletion. Functional reconstitution of p18INK4C in GBM cells null for both p16INK4A and p18INK4C resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18INK4C in p16INK4A-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16INK4A in primary astrocytes induced a concomitant increase in p18INK4C. Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18INK4C in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.

Publication Title

Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9171
Expression profiles of human glioblastoma frozen tumors and cell lines
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We have developed a nonheuristic genome topography scan (GTS) algorithm to characterize the patterns of genomic alterations in human glioblastoma (GBM), identifying frequent p18INK4C and p16INK4A codeletion. Functional reconstitution of p18INK4C in GBM cells null for both p16INK4A and p18INK4C resulted in impaired cell-cycle progression and tumorigenic potential. Conversely, RNAi-mediated depletion of p18INK4C in p16INK4A-deficient primary astrocytes or established GBM cells enhanced tumorigenicity in vitro and in vivo. Furthermore, acute suppression of p16INK4A in primary astrocytes induced a concomitant increase in p18INK4C. Together, these findings uncover a feedback regulatory circuit in the astrocytic lineage and demonstrate a bona fide tumor suppressor role for p18INK4C in human GBM wherein it functions cooperatively with other INK4 family members to constrain inappropriate proliferation.

Publication Title

Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12694
Cooperative actions of p53 and Pten in normal and neoplastic progenitor cell renewal and differentiation
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Glioblastoma (GBM) is a highly lethal brain tumor presenting as one of two subtypes with distinct clinical histories and molecular profiles. The primary GBM subtype presents acutely as high-grade disease that typically harbors EGFR, PTEN and Ink4a/Arf mutations, and the secondary GBM subtype evolves from the slow progression of low-grade disease that classically possesses PDGF and p53 events1. Here, we show that concomitant CNS-specific deletion of p53 and Pten in the mouse CNS generates a penetrant acute-onset high-grade malignant glioma phenotype with striking clinical, pathological and molecular resemblance to primary GBM in humans. This genetic observation prompted p53 and PTEN mutational analysis in human primary GBM, demonstrating unexpectedly frequent inactivating mutations of p53 as well the expected PTEN mutations. Integrated transcriptomic profling, in silico promoter analysis and functional studies of murine neural stem cells (NSCs) established that dual, but not singular, inactivation of p53 and Pten promotes an undifferentiated state with high renewal potential and drives elevated c-Myc levels and its associated signature. Functional studies validated increased c-Myc activity as a potent contributor to the impaired differentiation and enhanced renewal of p53-Pten null NSCs as well as tumor neurospheres (TNSs) derived from this model. c-Myc also serves to maintain robust tumorigenic potential of p53-Pten null TNSs. These murine modeling studies, together with confirmatory transcriptomic/promoter studies in human primary GBM, validate a pathogenetic role of a common tumor suppressor mutation profile in human primary GBM and establish c-Myc as a key target for cooperative actions of p53 and Pten in the regulation of normal and malignant stem/progenitor cell differentiation, self-renewal and tumorigenic potential.

Publication Title

p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE32285
Genome-wide analysis of lupus immune complex stimulation and how this response is regulated by C1q
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE32278
Genome-wide analysis of lupus immune complex stimulation of purified CD14+ monocytes and how this response is regulated by C1q
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanRef-8 v3.0 expression beadchip

Description

The goal of this study was to determine what genes are up- and down-regulated in response to lupus immune complexes in purified CD14+ monocyte stimulations. Our results have shown that novel genes are induced by immune complexes but the response is less robust when using purified monocytes versus total PBMCs

Publication Title

Plasmacytoid dendritic cells and C1q differentially regulate inflammatory gene induction by lupus immune complexes.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP159688
mRNA-seq of bypass grafts in mice, utilizing the vena cava as carotid artery bypass graft
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Surgical interventions on blood vessels bear a risk for intimal hyperplasia and atherosclerosis as a consequence of injury. A specific feature of intimal hyperplasia is the loss of vascular smooth muscle cell (VSMC) differentiation gene expression. We hypothesized that immediate responses following injury induce vascular remodeling. To differentiate injury due to trauma, reperfusion and pressure changes we analyzed vascular responses to carotid artery bypass grafting in mice compared to transient ligation. As a control, the carotid artery was surgically laid open only. In both, bypass or ligation models, the inflammatory responses were transient, peaking after 6h, whereas the loss of VSMC differentiation gene expression persisted. Extended time kinetics showed that transient carotid artery ligation was sufficient to induce a persistent VSMC phenotype change throughout 28 days. Transient arterial ligation in ApoE knockout mice resulted in atherosclerosis in the transiently ligated vascular segment but not on the not-ligated contralateral side. The VSMC phenotype change could not be prevented by anti-TNF antibodies, Sorafenib, Cytosporone B or N-acetylcysteine treatment. Surgical interventions involving hypoxia/reperfusion are sufficient to induce VSMC phenotype changes and vascular remodeling. In situations of a perturbed lipid metabolism this bears the risk to precipitate atherosclerosis. Overall design: Comparison of mRNA changes between control tissue and bypass grafts perfused for 1, 6 and 24h. Number of replicated per group =4-5

Publication Title

Hypoxia/reperfusion predisposes to atherosclerosis.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon GSE98546
p27 haploinsufficiency in rats associates with invasive medullary thyroid carcinoma
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

CDKN1B (p27) was formally established as a tumor suppressor gene (tsg) following the identification of inactivating germline mutations in rats (MENX syndrome) and patients (MEN4 syndrome) developing multiple neuroendocrine tumors (NETs). MENX-affected rats are homozygous for the predisposing p27 mutation, suggesting a canonical tsg function. In contrast, mice heterozygous for a defective Cdkn1b allele are already predisposed to tumor formation (haploinsufficiency). We here report that heterozygous mutant rats (p27+/mut) develop the same NETs seen in the homozygous (p27mut/mut) animals but with slower progression. In the tumors of p27+/mut rats, the wild-type allele is neither lost nor silenced, implying that p27 is haploinsufficient for tumor suppression also in this model.

Publication Title

Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma.

Sample Metadata Fields

Age

View Samples
accession-icon GSE83401
Targeting PI3K/mTOR signaling exerts potent antitumor activity in pheochromocytoma in vivo
  • organism-icon Rattus norvegicus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Pheochromocytomas (PCC) are mostly benign tumors, amenable to complete surgical resection. However, 1017% of cases can become malignant, and once metastasized, there is no curative treatment for this disease. Given the need to identify effective therapeutic approaches for PCC, we evaluated the antitumor potential of the dual PI3K/mTOR inhibitor BEZ235 against these tumors. We employed an in vivo model of endogenous PCCs (MENX mutant rats), which closely recapitulate the human tumors. Mutant rats with PCCs were treated with 2 doses of BEZ235 (20 and 30 mg/kg), or with placebo, for 2 weeks. Treatment with BEZ235 induced cytostatic and cytotoxic effects on rat PCCs, which could be appreciated by both staining the tumors ex vivo with appropriate markers, and non-invasively by functional imaging (diffusion weighted-DW-MRI) in vivo.

Publication Title

Targeting PI3K/mTOR signaling exerts potent antitumor activity in pheochromocytoma in vivo.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE29457
p27 is a haploinsufficient tumor suppressor in the MENX multiple endocrine neoplasia syndrome in rats
  • organism-icon Rattus norvegicus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

As overwhelming evidence coming from transgenic mouse models but also from MEN4 patients seem to suggest that loss or inactivation of a single p27 allele plays an important role in neuroendocrine tumorigenesis, we decided to perform a detailed analysis of the phenotype of rats heterozygous for the MENX-associated germline Cdkn1b mutation. We here show that the reduction to a single functional p27 allele predisposes MENX heterozygous rats to the development of neuroendocrine malignancies.

Publication Title

Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE53365
Heterozygous mutant MENX rats as a novel model of invasive medullary thyroid carcinoma
  • organism-icon Rattus norvegicus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

As overwhelming evidence coming from transgenic mouse models but also from MEN4 patients seem to suggest that loss or inactivation of a single p27 allele plays an important role in neuroendocrine tumorigenesis, we decided to perform a detailed analysis of the phenotype of rats heterozygous for the MENX-associated germline Cdkn1b mutation.

Publication Title

Characterization of neuroendocrine tumors in heterozygous mutant MENX rats: a novel model of invasive medullary thyroid carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact