refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 43 results
Sort by

Filters

Technology

Platform

accession-icon GSE18624
H2A.Z - Containing Nucleosomes Mediate the Thermosensory Response in Arabidopsis
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We isolated mutants in Arabidopsis with enhanced ambient temperature response. Microarray analysis was performed to understand the extent to which ambient temperature transcriptome is perturbed in the mutants in comparison with the WT at non inductive 12 C and after shift to inductive 27 C for 2 h and 24 h.

Publication Title

H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61937
Neuron-specific deletion of the miRNA-processing enzyme DICER induces severe but transient obesity in mice
  • organism-icon Mus musculus
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Through post-transcriptional regulation of gene expression, miRNAs affect numerous regulatory pathways including those crucial for maintaining metabolic balance. Here we demonstrate that a neuronal-specific inhibition of miRNA maturation in adult mice leads to a rapid development of severe obesity, which is equally rapidly reversed. Development of obesity was associated with increased food intake and efficiency, and decreased locomotor activity. The ensuing decrease in body weight resembled a catabolic state with lowered O2-consumption and respiratory-exchange ratio. Brain transcriptome analyses in obese mice identified several obesity-related pathways including leptin, somatostatin, and nemo-like kinase signaling, as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin). A cluster of genes involved in synaptic plasticity was specifically enriched in post-obese mice that did not appear in obese mice. While other studies have identified a role for miRNAs in obesity our model is unique in that it allows for the study of processes involved in reversing obesity.

Publication Title

A neuron-specific deletion of the microRNA-processing enzyme DICER induces severe but transient obesity in mice.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon E-TABM-21
Transcription profiling by array of Arabidopsis mutant for constans or flowering locus T after exposure to different photoperiods
  • organism-icon Arabidopsis thaliana
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Response to photoperiod in Arabidopsis wildtype, co, and ft mutant plants.

Publication Title

Integration of spatial and temporal information during floral induction in Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72253
Novel IDH1 Mutant Inhibitors for Treatment of Acute Myeloid Leukemia
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

New IDH1 mutant inhibitors for treatment of acute myeloid leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE72152
Novel IDH1 Mutant Inhibitors for Treatment of Acute Myeloid Leukemia (expression)
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st), Illumina HiSeq 2000

Description

Neomorphic mutations in isocitrate dehydrogenase 1 (IDH1) are driver mutations in acute myeloid leukemia (AML) and other cancers. We report the development of new allosteric inhibitors of mutant IDH1. Crystallographic and biochemical results demonstrated that compounds of this chemical series bind to an allosteric site and lock the enzyme in a catalytically inactive conformation, thereby enabling inhibition of different clinically relevant IDH1 mutants. Treatment of IDH1 mutant primary AML cells uniformly led to a decrease in intracellular 2-HG, abrogation of the myeloid differentiation block and induction of granulocytic differentiation at the level of leukemic blasts and more immature stem-like cells, in vitro and in vivo. Molecularly, treatment with the inhibitors led to a reversal of the DNA cytosine hypermethylation patterns caused by mutant IDH1 in AML patients cells. Our study provides proof-of-concept for the molecular and biological activity of novel allosteric inhibitors for targeting different mutant forms of IDH1 in leukemia. To obtain insight into the molecular mechanism for the induction of granulocytic differentiation and cell death following inhibition of IDH1 mutant protein in primary AML cells, we performed gene expression microarrays following treatment with either GSK321 IDH1 inhibitor or Controls (DMSO or GSK990 inactive inhibitor).

Publication Title

New IDH1 mutant inhibitors for treatment of acute myeloid leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP099689
Genome-wide analysis of transcription, H2A.Z, nucleosomes and HSF1 dynamics in response to temperature increase in Arabidopsis thaliana [RNA-Seq II]
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Plants are sessile organisms and therefore must sense and respond to changes of their surrounding conditions such as ambient temperature, which vary diurnally and seasonally. It is not yet clear how plants sense temperature and integrate this information into their development. We have previously shown that H2A.Z-nucleosomes are evicted in response to warmer temperatures. It is not clear however, whether the link between transcriptional responsiveness and changes in H2A.Z binding in context of temperature shifts is a global trend that can be seen throughout the genome, or the phenomenon is specific to a specialised set of temperature-responsive genes. In addition to the role of H2A.Z-nucleosome dynamics in the transcriptional response to temperature, it was shown that genes strongly misregulated in the h2a.z mutant are enriched for gene categories involved in response to multiple environmental cues. This suggests that H2A.Z could be implicated in the transcriptional response to various environmental inputs, raising the question: What brings the specificity of H2A.Z dynamics in response to temperature? To address this question we have profiled H2A.Z-nucleosome occupancy genome wide (using ChIP-seq) during a time course after temperature variation and compared its dynamics to transcriptional changes. We identified a fast, targeted and transient eviction of H2A.Z associated with transcriptional activation in response to temperature for a few hundreds genes. This eviction is associated with a reduction of the stability of the nucleosome. Moreover the genes with a fast H2A.Z eviction were strongly enriched in heat shock elements in their promoter and we observed a strong association between HSF1 binding and H2AZ eviction at warm temperature. These results highlight the importance of the interplay between transcription factors and chromatin to allow a controlled and dynamics response to temperature. Overall design: RNA-seq were generated in duplicate for seedlings shifted to warm temperature

Publication Title

Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP115918
Genome-wide analysis of transcription, H2A.Z, nucleosomes and HSF1 dynamics in response to temperature increase in Arabidopsis thaliana [RNA-Seq III]
  • organism-icon Arabidopsis thaliana
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 1000

Description

Plants are sessile organisms and therefore must sense and respond to changes of their surrounding conditions such as ambient temperature, which vary diurnally and seasonally. It is not yet clear how plants sense temperature and integrate this information into their development. We have previously shown that H2A.Z-nucleosomes are evicted in response to warmer temperatures. It is not clear however, whether the link between transcriptional responsiveness and changes in H2A.Z binding in context of temperature shifts is a global trend that can be seen throughout the genome, or the phenomenon is specific to a specialised set of temperature-responsive genes. In addition to the role of H2A.Z-nucleosome dynamics in the transcriptional response to temperature, it was shown that genes strongly misregulated in the h2a.z mutant are enriched for gene categories involved in response to multiple environmental cues. This suggests that H2A.Z could be implicated in the transcriptional response to various environmental inputs, raising the question: What brings the specificity of H2A.Z dynamics in response to temperature? To address this question we have profiled H2A.Z-nucleosome occupancy genome wide (using ChIP-seq) during a time course after temperature variation and compared its dynamics to transcriptional changes. We identified a fast, targeted and transient eviction of H2A.Z associated with transcriptional activation in response to temperature for a few hundreds genes. This eviction is associated with a reduction of the stability of the nucleosome. Moreover the genes with a fast H2A.Z eviction were strongly enriched in heat shock elements in their promoter and we observed a strong association between HSF1 binding and H2AZ eviction at warm temperature. These results highlight the importance of the interplay between transcription factors and chromatin to allow a controlled and dynamics response to temperature. Overall design: RNA-seq were generated in duplicate for seedlings shifted to warm temperature

Publication Title

Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP132408
Direct control of SPEECHLESS by PIF4 in the high temperature response of stomatal development
  • organism-icon Arabidopsis thaliana
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Environmental factors shape the phenotypes of multicellular organisms. The production of stomata—the epidermal pores required for gas exchange in plants—is highly plastic, and provides a powerful platform to address environmental influence on cell differentiation [1-3]. Rising temperatures are already impacting plant growth, a trend expected to worsen in the near future [4]. High temperature inhibits stomatal production but the underlying mechanism is not known [5]. Here, we show that elevated temperature suppresses the expression of SPEECHLESS (SPCH), the bHLH transcription factor that serves as the master regulator of stomatal lineage initiation [6,7]. Our genetic and expression analyses indicate that the suppression of SPCH and stomatal production is mediated by the bHLH transcription factor PHYTOCHROME-INTERACTING FACTOR 4 (PIF4), a core component of high temperature signaling [8]. Importantly, we demonstrate that upon exposure to high temperature, PIF4 accumulates in the stomatal precursors and binds to the promoter of SPCH. In addition, we find SPCH feeds back negatively to the PIF4 gene. We propose a model where the high temperature-activated PIF4 binds and represses SPCH expression to restrict stomatal production at high temperature. Our work identifies a molecular link connecting high temperature signaling and stomatal development, and reveals a direct mechanism by which production of a specific cell lineage can be controlled by a broadly-expressed environmental signaling factor. Overall design: Gene expression profiles following 12 hr Dex-induction of control and ML1p:SPCH1-4A-expressing Arabidopsis plants grown in liquid culture. Four replicates per line at 0 and 12 hr.

Publication Title

Direct Control of SPEECHLESS by PIF4 in the High-Temperature Response of Stomatal Development.

Sample Metadata Fields

Age, Subject

View Samples
accession-icon SRP148786
A Transcriptomic Analysis of the Development of Skeletal Muscle Atrophy in Cancer-Cachexia in Tumor-Bearing Mice
  • organism-icon Mus musculus
  • sample-icon 39 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We recently demonstrated mitochondrial degenerations precede muscle wasting in time course progression of CC. However, the extent of muscle perturbations prior to wasting in CC is unknown. Therefore, we performed global gene expression analysis in CC-induced muscle wasting to enhance understanding of intramuscular perturbations across the development of CC. Overall design: Lewis Lung Carcinoma (LLC) was injected into the hind-flank of C57BL6/J mice at 8 wks age with tumor allowed to develop for 1, 2, 3, or 4 wks and compared to PBS injected control. Muscle wasting was evident at 4 wks LLC. Animals were anesthetized using isoflourane and gastrocnemius muscles were collected for analysis. Conclusions: Current findings present novel evidence of transcriptomic shifts and altered cellular pathways in CC-induced muscle wasting.

Publication Title

Transcriptomic analysis of the development of skeletal muscle atrophy in cancer-cachexia in tumor-bearing mice.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE55845
Analysis of transcriptomic diversitification of developing cumulus and mural granulosa cells in mouse ovarian follicles
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Cumulus cells and mural granulosa cells (MGCs) are spatially and functionally distinct cell types in antral follicles: cumulus cells contact the oocyte and most MGCs contact the basal lamina. For transcriptomic analyses, both cell types were collected from small and large antral follicles, before and after stimulation of immature mice with eCG, respectively. Both cell types underwent dramatic transcriptomic changes and the differences between them became greater with follicular growth. Although cumulus cells of both stages of follicular development are competent to undergo expansion in vitro, they were otherwise remarkably dissimilar with transcriptomic changes quantitatively equivalent to those of MGCs. Gene Ontology (GO) analysis showed that cumulus cells of small follicles were enriched in transcripts generally associated with catalytic components of metabolic processes while those from large follicles were involved in regulation of metabolism, cell differentiation, and adhesion. Upon contrasting cumulus cells versus MGCs, cumulus cells were enriched in transcripts associated with metabolism and cell proliferation while MGCs were enriched for transcripts involved in cell signaling and differentiation.

Publication Title

Transcriptomic diversification of developing cumulus and mural granulosa cells in mouse ovarian follicles.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact