refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 105 results
Sort by

Filters

Technology

Platform

accession-icon GSE44951
Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Distinct ER Proteostasis Environments
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE44949
Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Distinct ER Proteostasis Environments [HEK293DAX]
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selectively restoring aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR-activation.

Publication Title

Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE44950
Stress-Independent Activation of XBP1s and/or ATF6 Reveals Three Functionally Distinct ER Proteostasis Environments [HEK293DYG]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The unfolded protein response (UPR) maintains endoplasmic reticulum (ER) proteostasis through the activation of transcription factors such as XBP1s and ATF6. The functional consequences of these transcription factors for ER proteostasis remain poorly defined. Here, we describe methodology that enables orthogonal, small molecule-mediated activation of the UPR-associated transcription factors XBP1s and/or ATF6 in the same cell independent of stress. We employ transcriptomics and quantitative proteomics to evaluate ER proteostasis network remodeling owing to the XBP1s and/or ATF6 transcriptional programs. Furthermore, we demonstrate that the three ER proteostasis environments accessible by activating XBP1s and/or ATF6 differentially influence the folding, trafficking, and degradation of destabilized ER client proteins without globally affecting the endogenous proteome. Our data reveal how the ER proteostasis network is remodeled by the XBP1s and/or ATF6 transcriptional programs at the molecular level and demonstrate the potential for selectively restoring aberrant ER proteostasis of pathologic, destabilized proteins through arm-selective UPR-activation.

Publication Title

Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE66256
Frequent derepression of the mesenchymal transcription factor gene in acute myeloid leukemia
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Frequent Derepression of the Mesenchymal Transcription Factor Gene FOXC1 in Acute Myeloid Leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE66254
Frequent derepression of the mesenchymal transcription factor gene in acute myeloid leukemia (human)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [probe set (exon) version (huex10st)

Description

Bone marrow samples from normal adult male donors were collected into EDTA. Red cells were removed by ammonium chloride lysis. Leukocytes were washed in SM buffer and CD34+ cells were separated from CD34- cells using an AutoMACS device and anti-CD34 immunomagnetic beads (Miltenyi Biotec), according to manufacturers instructions. For mature cell populations, CD34- cells were FACS purified according to the following immunophenotypes, with 7-AAD used to exclude dead cells: Neutrophils: side scatter high CD15+ CD16+. Monocytes: side scatter low-intermediate CD14+ CD16- CD15-. See also Huang et al., 2014.

Publication Title

Frequent Derepression of the Mesenchymal Transcription Factor Gene FOXC1 in Acute Myeloid Leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE38205
Expression data for inbred mouse brains
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Prion diseases are fatal neurodegenerative disorders that include bovine spongiform encephalopathy (BSE) and scrapie in animals and Creutzfeldt-Jakob disease (CJD) in humans. They are characterized by long incubation periods, variation in which is determined by many factors including genetic background. In some cases it is possible that incubation time may be directly correlated to the level of gene expression. In order to test this hypothesis we combined incubation time data from five different inbred lines of mice with quantitative gene expression profiling in normal brains and identified five genes with expression levels that correlate with incubation time. One of these genes, Hspa13 (Stch), is a member of the Hsp70 family of ATPase heat shock proteins which have been previously implicated in prion propagation. To test whether Hspa13 plays a causal role in determining the incubation period we tested two over-expressing mouse models. The Tc1 human chromosome 21 (Hsa21) transchromosomic mouse model of Down syndrome is trisomic for many Hsa21 genes including Hspa13 and following Chandler/RML prion inoculation shows a 4% reduction in incubation time. Furthermore, a transgenic model with eight fold over-expression of mouse Hspa13 exhibited highly significant reductions in incubation time of 16%, 15% and 7% following infection with Chandler/RML, ME7 and MRC2 prion strains respectively. These data further implicate Hsp70-like molecular chaperones in protein misfolding disorders such as prion disease.

Publication Title

Overexpression of the Hspa13 (Stch) gene reduces prion disease incubation time in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP173201
Transcriptome of Dp1Tyb and wild-type mouse embryonic fibroblasts [ERCC spike-ins]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Purpose: to identify the effects of the Dp1Tyb mutation on the transcriptome of mouse embryonic fibroblasts Overall design: RNAseq libraries were prepared from RNA isolated from mouse embryonic fibroblasts. Libraries were prepared from total RNA using the TruSeq Stranded mRNA Sample Prep Kit (Illumina) by the Advanced Sequencing Facility, The Francis Crick Institute. Libraries were sequenced (100 bases paired end) on the Illumina Hiseq 4000 Please note that this dataset contains ERCC spike ins to normalise the data

Publication Title

Gene expression dysregulation domains are not a specific feature of Down syndrome.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP079004
Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Imbalances in endoplasmic reticulum (ER) proteostasis are associated with etiologically-diverse degenerative diseases linked to excessive extracellular protein misfolding and aggregation. Reprogramming of the ER proteostasis environment through genetic activation of the Unfolded Protein Response (UPR)-associated transcription factor ATF6 attenuates secretion and extracellular aggregation of amyloidogenic proteins. Here, we employed a screening approach that included complementary arm-specific UPR reporters and medium-throughput transcriptional profiling to identify non-toxic small molecules that phenocopy the ATF6-mediated reprogramming of the ER proteostasis environment. Comprehensive transcriptome analysis was employed to validate the capacity of three prioritized compounds to remodel the ER proteostasis environment, and to assess the prefential activation of ATF6 transcriptional targets relative to targets of the IRE1/XBP1s and PERK arms of the UPR. Overall design: HEK293T-Rex and HEK293-DAX cells were treated for 6 hr with vehicle (DMSO), 1 µM Tg, 10 mM TMP (in HEK293DAX), or 10 µM 132, 147 or 263 in biological triplicate at 37 °C

Publication Title

Small molecule proteostasis regulators that reprogram the ER to reduce extracellular protein aggregation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE23722
Rapid SIV Env-specific mucosal and serum antibody induction augments cellular immunity in protecting immunized, elite-controller macaques against high dose heterologous SIV challenge
  • organism-icon Macaca mulatta
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Goal of this study was to assess the levels of protection and investigate cellular, humoral, and mucosal immune correlates on the functional and gene transcriptional levels in elite-controller macaques following high dose SIV challenge.

Publication Title

Rapid SIV Env-specific mucosal and serum antibody induction augments cellular immunity in protecting immunized, elite-controller macaques against high dose heterologous SIV challenge.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE15296
Peripheral blood biomarker signatures for acute kidney transplant rejection
  • organism-icon Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In the present work, we have used whole genome expression profiling of peripheral blood samples from 51 patients with biopsy-proven acute kidney transplant rejection and 24 patients with excellent function and biopsy-proven normal transplant histology. The results demonstrate that there are 1738 probesets on the Affymetrix HG-U133 Plus 2.0 GeneChip representing 1472 unique genes which are differentially expressed in the peripheral blood during an acute kidney transplant rejection. By ranking these results we have identified minimal sets of 50 to 150 probesets with predictive classification accuracies for AR of greater than 90% established with several different prediction tools including DLDA and PAM. We have demonstrated that a subset of peripheral blood gene expression signatures can also diagnose four different subtypes of AR (Banff Borderline, IA, IB and IIA) and the top 100 ranked classifiers have greater than 89% predictive accuracy. Finally, we have demonstrated that there are gene signatures for early and late AR defined as less than or greater than one year post-transplant with greater than 86% predictive accuracies. We also confirmed that there are 439 time-independent gene classifiers for AR. Based on these results, we conclude that peripheral blood gene expression profiling can be used to diagnose AR at any time in the first 5 years post-transplant in the setting of acute kidney transplant dysfunction not caused by BK nephropathy, other infections, drug-induced nephrotoxicity or ureteral obstruction.

Publication Title

Molecular classifiers for acute kidney transplant rejection in peripheral blood by whole genome gene expression profiling.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact