refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 227 results
Sort by

Filters

Technology

Platform

accession-icon GSE40469
Transcriptome Analysis of Exercise Ancestry
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Transcriptome analysis of gastrocnemius muscle RNA samples from exercise and sedentary ancestries

Publication Title

Sex-specific effects of exercise ancestry on metabolic, morphological and gene expression phenotypes in multiple generations of mouse offspring.

Sample Metadata Fields

Sex

View Samples
accession-icon SRP052064
Expression profiling of mouse T-ALL (Vav-tTA;TRE-GFP-shIkaros primary leukemia ALL211) cells following Ikaros restoration
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To examine Ikaros tumor suppressor mechanisms, we have utilized inducible RNAi to dynamically restore endogenous Ikaros expression in T-ALL driven by its knockdown. This causes rapid transcriptional repression of Notch1 and associated targets including Myc, even in leukemias harboring spontaneous activating Notch1 mutations (producing aberrant ICN1) similar to those found in 60% of human T-ALL. Ikaros restoration results in sustained regression of Notch1-wild type leukemias while endogenous or engineered ICN1 expression promotes rapid disease relapse, indicating that ICN1 functionally antagonizes Ikaros in T-ALL. Overall design: RNA-seq was performed on T-ALL (Vav-tTA;TRE-GFP-shIkaros primary leukemia ALL211) cells isolated from two untreated and two 3-day Dox-treated mice.

Publication Title

Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP052063
Expression profiling of mouse T-ALL (Vav-tTA;TRE-GFP-shIkaros primary leukemia ALL65) cells following Ikaros restoration
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

To examine Ikaros tumor suppressor mechanisms, we have utilized inducible RNAi to dynamically restore endogenous Ikaros expression in T-ALL driven by its knockdown. This causes rapid transcriptional repression of Notch1 and associated targets including Myc, even in leukemias harboring spontaneous activating Notch1 mutations (producing aberrant ICN1) similar to those found in 60% of human T-ALL. Ikaros restoration results in sustained regression of Notch1-wild type leukemias while endogenous or engineered ICN1 expression promotes rapid disease relapse, indicating that ICN1 functionally antagonizes Ikaros in T-ALL. Overall design: RNA-seq was performed on T-ALL (Vav-tTA;TRE-GFP-shIkaros primary leukemia ALL65) cells isolated from three untreated and three 3-day Dox-treated mice. There were two sequencing runs of each RNA sample.

Publication Title

Activated Notch counteracts Ikaros tumor suppression in mouse and human T-cell acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP033415
Expression profiling of mouse bone marrow pre-B cells
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Triplicate RNA-seq expression analysis of bone marrow pre-B cells isolated from mice, to demonstrate repertoire at the IgH locus Overall design: Triplicate RNA-seq expression analysis of bone marrow pre-B cells

Publication Title

Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP041820
Inducible PAX5 expression in a human B lymphoblastic leukemia cell line
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Hypomorphic mutations of the transcription factor PAX5 occur in one third of B-progenitor acute lymphoblastic leukemias (B-ALLs). To identify PAX5-regulated genes in B-ALL, here we employ inducible expression of PAX5 in a human B-ALL cell line (REH) that harbors a loss-of-function mutation in PAX5. In this model, inducing PAX5 expression is associated with competitive disadvantage. Overall design: Comparison of REH cell lines with Dox-inducible expression of PAX5-IRES-GFP, or control GFP alone. GFP positive cells were isolated by FACS.

Publication Title

Pax5 loss imposes a reversible differentiation block in B-progenitor acute lymphoblastic leukemia.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP067339
Ikaros-regulated genes in a mouse model of BCR-ABL1+ acute lymphoblastic leukemia
  • organism-icon Mus musculus
  • sample-icon 82 Downloadable Samples
  • Technology Badge IconNextSeq 500, Illumina HiSeq 2000

Description

To examine Ikaros tumor suppressor mechanisms, we have utilized inducible RNAi to dynamically restore endogenous Ikaros expression in BCR-ABL1+ B-ALL driven by its knockdown (Ikaros knockdown), and compared these tumors to tumors driven by BCR-ABL1 alone (control). Restoration of Ikaros causes rapid regression of tumor cells in vivo, significantly prolonging tumor transplant recipient survival. Using both transgenic and retroviral approaches, we conducted expression analysis of B-ALL by RNA-Seq and have identified a series of Ikaros-regulated genes within established tumor cell in vivo. Comparison of Ikaros-activated and Ikaros-repressed genes with human B-ALL expression data shows a set of conserved Ikaros target genes, some of which are associated with patient outcome (namely, CTNND1, IFITM3 and EMP1). Overall design: RNA-seq was performed on BCR-ABL1+ B-ALL with inducible Ikaros knockdown (Ikaros knockdown, n=8; transgenic n=5, retroviral n=3) or BCR-ABL1+ alone B-ALL (control, n=4; transgenic n=3, retroviral n=1) cells isolated from untreated and three 3-day Dox-treated mice. Samples were run on HiSeq or NextSeq platform. B-ALL B031 was run in technical duplicate. Extended Dox samples (B027: d7 and d10) and relapse samples for B027, B029 and B035 have also been analyzed in this dataset.

Publication Title

Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon SRP162331
CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary (II)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Inactivating mutations in SMARCA4 (BRG1), a key SWI/SNF chromatin remodelling gene, underlie small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). To reveal its druggable vulnerabilities, we perform kinase-focused RNAi screens and uncover that SMARCA4-deficient SCCOHT cells are highly sensitive to the inhibition of cyclin-dependent kinase 4/6 (CDK4/6). SMARCA4 loss causes profound downregulation of cyclin D1, which limits CDK4/6 kinase activity in SCCOHT cells and leads to in vitro and in vivo susceptibility to CDK4/6 inhibitors. SCCOHT patient tumors are deficient in cyclin D1 yet retain the retinoblastoma-proficient/p16INK4a-deficient profile associated with positive responses to CDK4/6 inhibitors. Thus, our findings indicate that CDK4/6 inhibitors, approved for a breast cancer subtype addicted to CDK4/6 activation, could be repurposed to treat SCCOHT. Moreover, our study suggests a novel paradigm whereby critically low oncogene levels, caused by loss of a driver tumor suppressor, may also be exploited therapeutically. Overall design: The effect of CDK6 knockdown and palbociclib treatment on SCCOHT cells.

Publication Title

CDK4/6 inhibitors target SMARCA4-determined cyclin D1 deficiency in hypercalcemic small cell carcinoma of the ovary.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE33692
Progression of ductal carcinoma in situ to invasive breast cancer
  • organism-icon Homo sapiens
  • sample-icon 44 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Ductal carcinoma in situ (DCIS) is a precursor lesion that can give rise to invasive breast cancer (IBC). It has been proposed that both the nature of the lesion and the tumor microenvironment play key roles in progression to IBC. Here, laser capture microdissected tissue samples from epithelium and stroma in normal breast, pure DCIS, and pure IBC were employed to define key gene expression profiles associated with disease progression.

Publication Title

Progression of ductal carcinoma in situ to invasive breast cancer is associated with gene expression programs of EMT and myoepithelia.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE40545
RB pathway deregulation promotes invasion and disease progression in a mouse model of MYC-overexpressing mammary tumorigenesis
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Breast cancer is a highly heterogeneous disease that is categorized into distinct tumor subtypes based on specific molecular attributes, which ultimately influence therapeutic options. Unlike ER+ and/or HER2+ cancers that are subject to specific targeted therapies, triple negative breast cancers (TNBCs) do not express these receptors, which leaves patients with limited treatment options. Thus, significant focus has been placed on identifying molecular attributes of basal-like disease that could be used to develop and/or direct novel treatment regimens. Activation of MYC signaling and inactivation of the RB-pathway are frequent events in many types of human cancers. These pathways influence many biological processes, such as cell proliferation, that contribute to the aggressiveness and therapeutic response of tumors. The current study examines the interaction of the MYC and RB pathways in mammary epithelial cell tumorigenesis.

Publication Title

RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE59054
Detailed localisation of diet-induced changes in gene expression in the murine small intestine.
  • organism-icon Mus musculus
  • sample-icon 114 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

An increasing amount of evidence suggests that the small intestine may play an important role in the development of metabolic diseases, such as obesity and insulin resistance. The small intestine provides the first barrier between diet and the body. As a result, dysregulation of biological processes and secretion of signal molecules from the small intestine may be of importance in the regulation and dysregulation of whole body metabolic homeostasis. Changes in gene expression of genes involved in lipid metabolism, cell cycle and immune response may contribute to the aetiology of diet-induced obesity and insulin resistance. In the current study we present a detailed investigation on the effects a chow diet, low fat diet and high fat diet on gene expression along the proximal-to-distal axis of the murine small intestine. The reported results provide a knowledge base for upcoming studies on the role of the small intestine in the aetiology of diet-induced diseases.

Publication Title

Cross-species comparison of genes related to nutrient sensing mechanisms expressed along the intestine.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact