refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 227 results
Sort by

Filters

Technology

Platform

accession-icon SRP002326
Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumors and matched controls
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzer

Description

We prepared small RNA libraries from 29 tumor/normal pairs of human cervical tissue samples. Analysis of the resulting sequences (42 million in total) defined 64 new human microRNA (miRNA) genes. Both arms of the hairpin precursor were observed in twenty-three of the newly identified miRNA candidates. We tested several computational approaches for analysis of class differences between high throughput sequencing datasets, and describe a novel application of log linear model that has provided the most datasets, and describe a novel application of log linear model that has provided the most effective analysis for this data. This method resulted in the identification of 67 miRNAs that were differentially-expressed between the tumor and normal samples at a false discovery rate less than 0.001. Overall design: A total of 29 tumor/normal pairs of human cervical tissue samples were analyzed. Two samples (G699N_2 and G761T_2) were performed in duplicates. No Fastq files for GSM532871 to GSM532889, GSM532929, and GSM532930. Sequence files are provided as text files for these 22 Sample records in GSE20592_RAW.tar. 38 samples with quality scores are available from SRA as SRP002/SRP002326 (see Supplementary file below).

Publication Title

Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP103817
Signature of coevolution between determinants of defense and life span in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 115 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

The selective impact of pathogen epidemics on host defenses can be strong but remains transient. By contrast, life-history shifts can durably and continuously modify the balance between costs and benefits, which arbitrates the evolution of host defenses. Their impact, however, has seldom been documented. Here, we show with a simple mathematical model that the selective advantage of the defense system is expected to decrease with decreasing life span. We further document that, in natural populations of the model plant system Arabidopsis thaliana, the expression level of defense genes correlate positively with flowering time, a proxy for the length of vegetative life span. Using a genetic strategy to partition life span-dependent and –independent defense genes, we demonstrate that this positive co-variation is not explained by the pleiotropic action of major regulatory genes controlling both defense and life span. In agreement with our model, this study reveals that natural selection has likely assembled alleles promoting lower expression of defense genes with alleles decreasing the duration of vegetative life span in natural populations of A. thaliana. This is the first study demonstrating that life history evolution has a pervasive impact on the evolution of host immunity. Overall design: Seeds of Bur-0, Col-0 and 278 Bur-0xCol-0 Recombinant Inbred Lines (RIL) obtained after 8 generations of selfing were provided by the Arabidopsis Stock Center at INRA Versailles (France). We selected the 40 RIL in the 15% and 85% quantiles of flowering time for RNA sequencing. Each RIL and the two parental lines were planted in 20 replicates in the conditions described above. At days 14 and 28, the oldest leaf was flash-frozen in liquid nitrogen. Three pools, each combining 13 RIL, were produced at each time point for early and late lines, for a total of 3 biological replicates, 2 pool types (early and late RIL) and 2 time points (14 and 28 days). For each of the two parental lines, leaves of 12 replicates were pooled for each time point.

Publication Title

Assortment of Flowering Time and Immunity Alleles in Natural Arabidopsis thaliana Populations Suggests Immunity and Vegetative Lifespan Strategies Coevolve.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE11001
Genome-wide expression profiling from formalin-fixed paraffin-embedded breast cancer core biopsies
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The routine workflow for invasive cancer diagnostics is based on biopsy processing by formalin fixation and subsequent paraffin embedding. Formalin-fixed paraffin-embedded (FFPE) tissue samples are easy to handle, stable and particularly suitable for morphologic evaluation, immunohistochemistry and in situ hybridization. However, it has become a paradigm that these samples cannot be used for genome-wide expression analysis with microarrays. To oppose this view, we present a pilot microarray study using FFPE core needle biopsies from breast cancers as RNA source. We found that microarray probes interrogating sequences near the poly-A-tail of the transcribed genes were well suitable to measure RNA levels in FFPE core needle biopsies. For the ER and the HER2 gene, we observed strong correlations between RNA levels measured in these probe sets and protein expression determined by immunohistochemistry (p = 0.000003 and p = 0.0022). Further, we have identified a signature of 364 genes that correlated with ER protein status and a signature of 528 genes that correlated with HER2 protein status. Many of these genes (ER: 60%) could be confirmed by analysis of an independent publicly available data set. Finally, a hierarchical clustering of the biopsies with respect to three recently reported gene expression grade signatures resulted in widely stable low and high expression grade clusters that correlated with the pathological tumor grade. These findings support the notion that clinically relevant information can be gained from microarray based gene expression profiling of FFPE cancer biopsies. This opens new opportunities for the integration of gene expression analysis into the workflow of invasive cancer diagnostics as well as translational research in the setting of clinical studies.

Publication Title

Genome-wide gene expression profiling of formalin-fixed paraffin-embedded breast cancer core biopsies using microarrays.

Sample Metadata Fields

Disease stage

View Samples
accession-icon GSE13693
Gene expression profiling of normal mouse myeloid cell populations
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Normal myeloid lineage cell populations (C57BL/6 mice, aged 4-10 weeks, male or female) with three distinct immunophenotypes were prospectively isolated and characterized. In preparation for FACS sorting, bone marrow cells were separated into c-kit+ and c-kit- fractions using an AutoMACS device. C-kit+ cells were further fractionated based on Gr1 and Mac1 expression, and absence of lineage antigen expression (B220, TER119, CD3, CD4, CD8 and IL7R), by cell sorting. C-kit+ Gr1+ Mac1lo/- and c-kit+ Gr1+ Mac1+ displayed cytologic features of undifferentiated hematopoietic cells or myeloblasts, whereas c-kit- Gr1+ Mac1+ cells were mature neutrophils.

Publication Title

Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13692
Expression profiling of MLL-AF10 myeloid leukemia cellular subsets
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Leukemia cells from mice with MLL-AF10 AML were fractionated into separate sub-populations on the basis of c-kit expression, which correlates with MLL LSC frequency (Somervaille and Cleary, 2006). The sorted AML sub-populations exhibited substantial differences in their frequencies of AML CFCs/LSCs (mean 14-fold) and morphologic features, consistent with a leukemia cell hierarchy with maturation through to terminally differentiated neutrophils.

Publication Title

Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP055176
m6A level and isoform characterization sequencing (m6A-LAIC-seq) reveal the census and complexity of the m6A epitranscriptome
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

N6-methyladenosine (m6A) is a widespread reversible chemical modification of RNAs, implicated in many aspects of RNA metabolism. Little quantitative information exists as to either how many transcript copies of particular genes are m6A modified (“m6A levels”), or the relationship of m6A modification(s) to alternative RNA isoforms. To deconvolute the m6A epitranscriptome, we developed m6A level and isoform-characterization sequencing (m6A-LAIC-seq). We found that cells exhibit a broad range of non-stoichiometric m6A levels with cell type specificity. At the level of isoform characterization, we discovered widespread differences in use of tandem alternative polyadenylation (APA) sites by methylated and nonmethylated transcript isoforms of individual genes. Strikingly, there is a strong bias for methylated transcripts to be coupled with proximal APA sites, resulting in shortened 3’ untranslated regions (3’-UTRs), while nonmethylated transcript isoforms tend to use distal APA sites. m6A-LAIC-seq yields a new perspective on transcriptome complexity and links APA usage to m6A modifications. Overall design: m6A-LAIC-seq of H1-ESC and GM12878 cell lines, each cell line has two replicates

Publication Title

m(6)A-LAIC-seq reveals the census and complexity of the m(6)A epitranscriptome.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9997
Molecular imaging of lymphoid organs and immune activation using PET with a new 18F-labeled 2-deoxycytidine analog
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Differential gene expression between naive and activated CD8+ T cells was assessed using microarray analysis to determine target genes for new positron emission tomography (PET) probe screening, in particular for molecular imaging of lymphoid organs and immune activation.

Publication Title

Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2'-deoxycytidine analog.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-1220
Transcription profiling by array of human T24 bladder cancer cells in response to hypericin-mediated photodynamic therapy in the absence or presence of the p38 MAPK inhibitor PD169316
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Study of the gene expression of T24 bladder cancer cells in response to hypericin-mediated photodynamic therapy in the absence or presence of the p38 MAPK inhibitor PD169316

Publication Title

Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells.

Sample Metadata Fields

Specimen part, Cell line, Compound

View Samples
accession-icon E-ATMX-13
Transcription profiling by array of Arabidopsis cell suspensions after treatment with methyl jasmonate
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The transcriptional response of Arabidopsis thaliana cell suspensions following treatment with the stress hormone methyl jasmonate (MeJA) was monitored over time 16 hours after subcultivation. Three time points were included: 30 minutes, 2 hours and 6 hours after elicitation with 50µm MeJA or DMSO as a control.

Publication Title

Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells.

Sample Metadata Fields

Compound, Time

View Samples
accession-icon GSE8307
Expression and neurobehavioral analyses in prosaposin deficient mice: Molecular alterations precede neuronal deficits
  • organism-icon Mus musculus
  • sample-icon 68 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Prosaposin encodes, in tandem, four small acidic activator proteins (saposins) with specificities for glycosphingolipids hydrolases in lysosomes. To explore the molecular mechanism(s) of disease progression, temporal transcriptome microarray analyses of cerebrum and cerebellum tissues were conducted using mRNA from three prosaposin deficiency mouse models: PS-NA (hypomorphic prosaposin deficiency), PS-/- (prosaposin null) and 4L/PS-NA (a V394L/V394L glucocerebrosidase mutation and PS-NA) mice. Our results indicate that regionally specific gene expression abnormalities preceded the histological and behavioral changes and CEBPD is a candidate regulator of brain disease in prosaposin deficiency. The alterations of gene expression are detected at birth and are more profound in cerebellum than cerebrum.

Publication Title

Temporal gene expression profiling reveals CEBPD as a candidate regulator of brain disease in prosaposin deficient mice.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact