refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 227 results
Sort by

Filters

Technology

Platform

accession-icon GSE6269
Gene expression patterns in blood leukocytes discriminate patients with acute infections
  • organism-icon Homo sapiens
  • sample-icon 119 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Each infectious agent represents a unique combination of pathogen-associated molecular patterns that interact with specific pattern-recognition receptors expressed on immune cells. Therefore, we surmised that the blood immune cells of individuals with different infections might bear discriminative transcriptional signatures. Gene expression profiles were obtained for 131 peripheral blood samples from pediatric patients with acute infections caused by influenza A virus, Gram-negative (Escherichia coli) or Gram-positive (Staphylococcus aureus and Streptococcus pneumoniae) bacteria. Thirty-five genes were identified that best discriminate patients with influenza A virus infection from patients with either E coli or S pneumoniae infection. These genes classified with 95% accuracy (35 of 37 samples) an independent set of patients with either influenza A, E coli, or S pneumoniae infection. A different signature discriminated patients with E coli versus S aureus infections with 85% accuracy (34 of 40). Furthermore, distinctive gene expression patterns were observed in patients presenting with respiratory infections of different etiologies. Thus, microarray analyses of patient peripheral blood leukocytes might assist in the differential diagnosis of infectious diseases.

Publication Title

Gene expression patterns in blood leukocytes discriminate patients with acute infections.

Sample Metadata Fields

Sex, Age, Treatment, Race

View Samples
accession-icon GSE11907
A Modular Analysis Framework for Blood Genomics Studies: Application to Systemic Lupus Erythematosus
  • organism-icon Homo sapiens
  • sample-icon 340 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The analysis of patient blood transcriptional profiles offers a means to investigate the immunological mechanisms relevant to human diseases on a genome-wide scale. In addition, such studies provide a basis for the discovery of clinically relevant biomarker signatures. We designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets. Mapping changes in gene expression at the module level generated disease-specific transcriptional fingerprints that provide a stable framework for the visualization and functional interpretation of microarray data. These transcriptional modules were used as a basis for the selection of biomarkers and the development of a multivariate transcriptional indicator of disease progression in patients with systemic lupus erythematosus. Thus, this work describes the implementation and application of a methodology designed to support systems-scale analysis of the human immune system in translational research settings.

Publication Title

A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE11908
Construction of a modular analysis framework for blood Genomics Studies
  • organism-icon Homo sapiens
  • sample-icon 271 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We designed a strategy for microarray analysis that is based on the identification of transcriptional modules formed by genes coordinately expressed in multiple disease data sets. Mapping changes in gene expression at the module level generated disease-specific transcriptional fingerprints that provide a stable framework for the visualization and functional interpretation of microarray data.

Publication Title

A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon GSE11909
A modular analysis framework for the discovery of biomarkers of Systemic Lupus Erythematosus
  • organism-icon Homo sapiens
  • sample-icon 154 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Transcriptional modules were used as a basis for the selection of biomarkers and the development of a multivariate transcriptional indicator of disease progression in patients with systemic lupus erythematosus.

Publication Title

A modular analysis framework for blood genomics studies: application to systemic lupus erythematosus.

Sample Metadata Fields

Sex, Age, Race

View Samples
accession-icon SRP002326
Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumors and matched controls
  • organism-icon Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzer

Description

We prepared small RNA libraries from 29 tumor/normal pairs of human cervical tissue samples. Analysis of the resulting sequences (42 million in total) defined 64 new human microRNA (miRNA) genes. Both arms of the hairpin precursor were observed in twenty-three of the newly identified miRNA candidates. We tested several computational approaches for analysis of class differences between high throughput sequencing datasets, and describe a novel application of log linear model that has provided the most datasets, and describe a novel application of log linear model that has provided the most effective analysis for this data. This method resulted in the identification of 67 miRNAs that were differentially-expressed between the tumor and normal samples at a false discovery rate less than 0.001. Overall design: A total of 29 tumor/normal pairs of human cervical tissue samples were analyzed. Two samples (G699N_2 and G761T_2) were performed in duplicates. No Fastq files for GSM532871 to GSM532889, GSM532929, and GSM532930. Sequence files are provided as text files for these 22 Sample records in GSE20592_RAW.tar. 38 samples with quality scores are available from SRA as SRP002/SRP002326 (see Supplementary file below).

Publication Title

Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30873
Effects of caspase-8 deletion in the intestinal epithelium
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Caspase-8 is a cystein protease involved in regulating apoptosis. The function of caspase-8 was studied in the intestinal epithelium, using mice with an intestinal epithelial cell specific deletion of caspase-8.

Publication Title

Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP103817
Signature of coevolution between determinants of defense and life span in Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 115 Downloadable Samples
  • Technology Badge IconIllumina HiScanSQ

Description

The selective impact of pathogen epidemics on host defenses can be strong but remains transient. By contrast, life-history shifts can durably and continuously modify the balance between costs and benefits, which arbitrates the evolution of host defenses. Their impact, however, has seldom been documented. Here, we show with a simple mathematical model that the selective advantage of the defense system is expected to decrease with decreasing life span. We further document that, in natural populations of the model plant system Arabidopsis thaliana, the expression level of defense genes correlate positively with flowering time, a proxy for the length of vegetative life span. Using a genetic strategy to partition life span-dependent and –independent defense genes, we demonstrate that this positive co-variation is not explained by the pleiotropic action of major regulatory genes controlling both defense and life span. In agreement with our model, this study reveals that natural selection has likely assembled alleles promoting lower expression of defense genes with alleles decreasing the duration of vegetative life span in natural populations of A. thaliana. This is the first study demonstrating that life history evolution has a pervasive impact on the evolution of host immunity. Overall design: Seeds of Bur-0, Col-0 and 278 Bur-0xCol-0 Recombinant Inbred Lines (RIL) obtained after 8 generations of selfing were provided by the Arabidopsis Stock Center at INRA Versailles (France). We selected the 40 RIL in the 15% and 85% quantiles of flowering time for RNA sequencing. Each RIL and the two parental lines were planted in 20 replicates in the conditions described above. At days 14 and 28, the oldest leaf was flash-frozen in liquid nitrogen. Three pools, each combining 13 RIL, were produced at each time point for early and late lines, for a total of 3 biological replicates, 2 pool types (early and late RIL) and 2 time points (14 and 28 days). For each of the two parental lines, leaves of 12 replicates were pooled for each time point.

Publication Title

Assortment of Flowering Time and Immunity Alleles in Natural Arabidopsis thaliana Populations Suggests Immunity and Vegetative Lifespan Strategies Coevolve.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon GSE9997
Molecular imaging of lymphoid organs and immune activation using PET with a new 18F-labeled 2-deoxycytidine analog
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Differential gene expression between naive and activated CD8+ T cells was assessed using microarray analysis to determine target genes for new positron emission tomography (PET) probe screening, in particular for molecular imaging of lymphoid organs and immune activation.

Publication Title

Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18F]-labeled 2'-deoxycytidine analog.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon E-MEXP-1220
Transcription profiling by array of human T24 bladder cancer cells in response to hypericin-mediated photodynamic therapy in the absence or presence of the p38 MAPK inhibitor PD169316
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Study of the gene expression of T24 bladder cancer cells in response to hypericin-mediated photodynamic therapy in the absence or presence of the p38 MAPK inhibitor PD169316

Publication Title

Molecular effectors and modulators of hypericin-mediated cell death in bladder cancer cells.

Sample Metadata Fields

Specimen part, Cell line, Compound

View Samples
accession-icon E-ATMX-13
Transcription profiling by array of Arabidopsis cell suspensions after treatment with methyl jasmonate
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The transcriptional response of Arabidopsis thaliana cell suspensions following treatment with the stress hormone methyl jasmonate (MeJA) was monitored over time 16 hours after subcultivation. Three time points were included: 30 minutes, 2 hours and 6 hours after elicitation with 50µm MeJA or DMSO as a control.

Publication Title

Mapping methyl jasmonate-mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured Arabidopsis cells.

Sample Metadata Fields

Compound, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact