refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE2375
Undifferentiated mouse embryonic stem cells, differentiated nestin-positive cells and fibroblast feeder layer.
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Version 2 Array (mgu74av2)

Description

Embryonic stem (ES) cells and ES cell-derived progeny characterized by nestin expression (including neural progenitors) were studied (three independent experiments). The mouse ES cell line R1 was cultured on a feeder layer of mouse embryonic fibroblasts (FL). ES cells were differentiated into nestin-positive cells for 4+8 days and 4+11 days according to the differentiation protocol by Rolletschek et al. (Mechanisms of Development 105, 93-104, 2001).

Publication Title

Pluripotency associated genes are reactivated by chromatin-modifying agents in neurosphere cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9365
Expression data from barley maturing and germinating grains
  • organism-icon Hordeum vulgare
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Barley Genome Array (barley1)

Description

Plant seeds prepare for germination already during seed maturation. We performed a detailed transcriptome analysis of barley grain maturation, desiccation and germination in two tissue fractions (endosperm/aleurone = e/a and embryo = em) using the Affymetrix barley1 chip.

Publication Title

Barley grain maturation and germination: metabolic pathway and regulatory network commonalities and differences highlighted by new MapMan/PageMan profiling tools.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE62505
Characterization of perivascular MSC from the adult human brain
  • organism-icon Homo sapiens
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Brain perivascular cells have been recently identified as new mesodermal cell type of the human brain.

Publication Title

Perivascular Mesenchymal Stem Cells From the Adult Human Brain Harbor No Instrinsic Neuroectodermal but High Mesodermal Differentiation Potential.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86194
Gene Expression profiles of normal and inflamed colon tissues from Nik+/+, NikIE
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

To investigate the detailed molecular mechanisms for the regulatory role of Nik in colitis, microarray gene expression analysis was performed on colon tissue RNA isolated from 3-month-old untreated control and DSS treated Nik+/+ and NikIE mice.

Publication Title

Intestinal non-canonical NFκB signaling shapes the local and systemic immune response.

Sample Metadata Fields

Age

View Samples
accession-icon SRP093978
In Vivo Chemical Screen Nominates Valproic Acid as Pharmacologic Modulator of Hematopoietic Stem and Progenitor Cell Activity
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The identification of small molecules which either increase the number and/or enhance the activity of CD34+ hematopoietic stem and progenitor cells (HSPCs) during ex-vivo expansion has remained challenging. Applying an unbiased in vivo chemical screen in a transgenic (c-myb:EGFP) zebrafish embryo model, histone deacetylase inhibitors (HDACI) (valproic acid, resminostat and entinostat) were shown to significantly amplify the number of phenotypic hematopoietic precursors. The identified HDACIs were confirmed to significantly enhance also the expansion of human HSPCs during ex vivo treatment. Long-term functionality of ex vivo expanded human HSPCs was verified in a xenotransplantation model using NSG mice. However, the HDACI induced proliferation of HSPCs was associated with short-term functional changes. One of the identified hits, valproic acid (VPA), increased the adhesion capacity of CD34+ cells on primary mesenchymal stromal cells and reduced their chemokine-mediated migration capacity in vitro. In line with the reduced migratory potential in vitro, homing as well as early engraftment of VPA treated human CD34+ cells was significantly impaired in the xenotransplantation model. Our data confirms that HDACI treatment leads to a net expansion of HSPCs cells with long-term engraftment potential across different species. However impaired homing and short-term-engraftment has to be kept in mind when designing clinical transplantation protocols. In addition, our gene expression analysis (RNA-Seq) revealed expression of several genes that were altered in CD34+ cells by VPA treatment including cell adhesion molecules and Notch and wnt genes which has been shown to be involved in preservation of stem cell properties. Overall design: Gene expression analysis of in vitro expanded human HSPCs (CD34+ cells) by valproic acid

Publication Title

Zebrafish In-Vivo Screening for Compounds Amplifying Hematopoietic Stem and Progenitor Cells: - Preclinical Validation in Human CD34+ Stem and Progenitor Cells.

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon GSE18660
Modulation of calcium activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker- like cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Background: Ion channels are key determinants for the function of excitable cells but little is known about their role and involvement during cardiac development. Earlier work identified Ca2+-activated potassium channels of small and intermediate conductance (SKCas) as important regulators of neural stem cell fate. Here, we have investigated their impact on the differentiation of pluripotent cells towards the cardiac lineage. Methods and Results: We have applied the SKCa-activator EBIO on embryonic stem cells and identified this particular ion channel family as a new critical target involved in the generation of cardiac pacemaker-like cells: SKCa-activation led to rapid remodeling of the actin cytoskeleton, inhibition of proliferation, induction of differentiation and diminished teratoma formation. Time-restricted SKCa-activation induced cardiac mesoderm and commitment to the cardiac lineage as shown by gene regulation, protein and functional electrophysiological studies. In addition, the differentiation into cardiomyocytes was modulated in a qualitative fashion, resulting in a strong enrichment of pacemaker-like cells. This was accompanied by induction of the sino-atrial gene program and in parallel by a loss of the chamber-specific myocardium. In addition, SKCa activity induced activation of the Ras-Mek-Erk signaling cascade, a signaling pathway involved in the EBIO-induced effects.

Publication Title

Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE40020
Gene expression characterization of HPV positive head and neck cancer to predict response to Chemoradiation
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Background: Human papillomavirus has been shown to have a causal role in the development of head and neck squamous cell carcinoma and represents a distinct and well-defined pathology. While HPV-positive HNSCC is associated with a better response to treatment and prognosis, a subset of patients do not respond favorably to current standard of care thus suffering unnecessary morbidity and delay to receive effective therapy.

Publication Title

Gene Expression Characterization of HPV Positive Head and Neck Cancer to Predict Response to Chemoradiation.

Sample Metadata Fields

Disease, Disease stage

View Samples
accession-icon SRP139542
Molecular subtype-specific immunocompetent models of high-grade urothelial carcinoma reveal differential neoantigen expression and response to immunotherapy
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We developed a UPPL (Upk3a-CreERT2;p53f/f;Ptenf/f;Rosa26LSL-Luc) mouse model of bladder cancer and compared it with the existing BBN (N-butyl-N-(4-hydroxybutyl)nitrosamine) mouse model of blader cancer. We cultured UPPL and BBN primary tumor cells as cell lines along with MB49 cancer cell lines and KT immortalized normal urothelial cell lines and implanted them back into mice as cell-line derived tumors. Overall design: RNASeq analysis was performed on 9 UPPL primary tumors, 11 BBN primary tumors, 1 UPPL cell line, 1 BBN cell line, 1 MB49 cell line, 3 KT cell lines, 4 UPPL cell-line derived tumors, 2 BBN cell-line derived tumors, and 4 MB49 cell-line derived tumors

Publication Title

Molecular Subtype-Specific Immunocompetent Models of High-Grade Urothelial Carcinoma Reveal Differential Neoantigen Expression and Response to Immunotherapy.

Sample Metadata Fields

Disease, Treatment, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact