refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon SRP168748
A coronin 1-dependent signaling axis in T cells essential for allograft rejection
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The goal of this analysis was to assess the similarity in transcriptomes between WT and Coro1-/- across regulatory and conventional T cells. Overall design: mRNA profiles of wild-type and Coronin1A knockout from murine regulatory (trg) and conventional (con) T cells were generated by deep sequencing, in triplicate, using Illumina TruSeq stranded mRNA sample kit.

Publication Title

Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE10463
Activation of aryl hydrocarbon receptor
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

VAF347 is a low molecular weight compound which inhibits allergic lung inflammation in vivo. This effect is likely due to a block of dendritic cell (DC) function to generate pro-inflammatory T-helper (Th) cells since VAF347 inhibits IL-6, CD86 and HLA-DR expression by human monocyte derived DC, three relevant molecules for Th-cell generation. Here we demonstrate that VAF347 interacts with the aryl hydrocarbon receptor (AhR) protein resulting in activation of the AhR signaling pathway. Functional AhR is responsible for the biological activity of VAF347 since, i) other AhR agonists display an identical activity profile in vitro, ii) gene silencing of wild type AhR expression or forced over-expression of a trans-dominant negative AhR ablates VAF347 activity to inhibit cytokine induced IL-6 expression in a human monocytic cell line and iii) AhR deficient mice are resistant to the compounds ability to block allergic lung inflammation in vivo. These data identify the AhR protein as key molecular target of VAF347 and its essential role for mediating the anti-inflammatory effects of the compound in vitro and in vivo.

Publication Title

Activation of the aryl hydrocarbon receptor is essential for mediating the anti-inflammatory effects of a novel low-molecular-weight compound.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP058698
Comparing effects of perfusion and hydrostatic pressure on human chondrocytes using gene profiles
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1500

Description

Hydrostatic pressure and perfusion have been shown to alter the chondrogenic potential of articular chondrocytes. In order to compare the effects of hydrostatic pressure plus perfusion (HPP) and perfusion (P) we investigated the complete gene expression profiles of human chondrocytes under HPP and P. A simplified bioreactor was constructed applying loading (0.1 MPa for 2 h) and perfusion (2ml) through the same piping by pressurizing the medium directly. High-density monolayer cultures of human chondrocytes were exposed to HPP or P for 4 days. Controls were maintained in static culture. Gene expression was evaluated by sequencing (RNAseq) and quantitative real-time PCR analysis. RNAseq identified similarities between the two treatments. Specifically, HPP and P increased COL2A1 expression and decreased COL1A1 and MMP-13 expression. Despite of the similarities, RNAseq revealed a list of cartilage genes including ACAN, ITGA10 and TNC, which were differentially expressed by HPP and P. Of these candidates adhesion related molecules were found to be upregulated in HPP. Both HPP and P treatment had beneficial effects on chondrocyte differentiation and decreased catabolic enzyme expression. The study provides new insight into how hydrostatic pressure and perfusion enhance cartilage differentiation and inhibit catabolic effects Overall design: 9 samples

Publication Title

Comparing effects of perfusion and hydrostatic pressure on gene profiles of human chondrocyte.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE140498
Hepatocytic c-Jun N-terminal kinases (JNK)-1/2 function determines cell fate during carcinogenesis
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Aberrant biliary hyperproliferation resulting from lack of differentiating signals favoring the maintenance of an immature and proliferative phenotype by biliary epithelial cells are ultimately responsible for ducto/cystogenesis and intrahepatic cholangiocarcinoma (CCA) formation. Mitogen-activated protein kinase (MAPK) signaling is pivotal for CCA-related tumorigenesis. In particular, targeted inhibition of JNK signaling has shown therapeutic potential. However, the cell-type specific role and mechanisms triggered by JNK in liver parenchymal cells during CCA remains largely unknown. Here, we aimed to investigate the relevance of JNK function in hepatocytes in experimental carcinogenesis. JNK signaling in hepatocytes was inhibited by crossing AlbCre-JNK1LoxP/LoxP mice with JNK2-deficient mice to generate Jnk1LoxP/LoxP/Jnk2−/− (JNKΔhepa) mice. JNKΔhepa mice were further interbred with hepatocyte-specific Nemo-knockout mice (NEMOΔhepa), a model of chronic liver inflammation and spontaneous hepatocarcinogenesis, to generate NEMO/JNKΔhepa mice. The impact of JNK deletion on liver damage, cell death, compensatory proliferation, fibrogenesis, and tumor development in NEMOΔhepa mice was determined. Moreover, regulation of essential genes was assessed by RT-PCR, immunoblottings and immunostains. Additionally, JNK2 inhibition, specifically in hepatocytes of NEMOΔhepa/JNK1Δhepa mice, was performed using siRNA (siJnk2) nanodelivery. Finally, active signaling pathways were blocked using specific inhibitors. Compound deletion of JNK1 and JNK2 in hepatocytes diminished hepatocarcinogenesis in both the DEN model of hepatocarcinogenesis and in NEMOΔhepa mice, but, in contrast, caused massive proliferation of the biliary ducts. Indeed, JNK deficiency in hepatocytes of NEMOΔhepa (NEMOΔhepa/JNKΔhepa) animals caused elevated fibrosis, increased apoptosis, increased compensatory proliferation, and elevated inflammatory cytokines expression, but reduced hepatocarcinogenesis. Furthermore, siJnk2 treatment in NEMOΔhepa/JNK1Δhepa mice recapitulated the phenotype of NEMOΔhepa/JNKΔhepa mice. Next, we sought to investigate the impact of molecular pathways in response to compound JNK deficiency in NEMOΔhepa mice. We found that NEMOΔhepa/JNKΔhepa livers exhibited overexpression of the IL-6/Stat3 pathway in addition to EGFR-Raf-MEK-ERK cascade. The functional relevance was tested by administering lapatinib - a dual tyrosine kinase inhibitor (TKI) of ErbB2 and EGFR signaling - to NEMOΔhepa/JNKΔhepa mice. Lapatinib effectively inhibited cystogenesis, improved transaminases and effectively blocked EGFR-Raf-MEK-ERK signaling. Our study defines a novel function of JNK in cell fate as well as hepatocarcinogenesis and opens new therapeutic avenues devised to inhibit pathways of cholangiocarcinogenesis.

Publication Title

Loss of c-Jun N-terminal Kinase 1 and 2 Function in Liver Epithelial Cells Triggers Biliary Hyperproliferation Resembling Cholangiocarcinoma.

Sample Metadata Fields

Age, Specimen part, Treatment

View Samples
accession-icon GSE141821
Transcriptomic analysis of CLL4-induced liver injury in WT and DPT KO mice
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

C57Bl6J mice were injected CCL4 for 8 weeks to induce liver injury and livers were used to prepare RNA.

Publication Title

Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARα-regulated dermatopontin.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact