refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 337 results
Sort by

Filters

Technology

Platform

accession-icon GSE34071
Expression data of Normal versus Mutant MPS VII C3H mouse
  • organism-icon Mus musculus
  • sample-icon 94 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We used microarray to detect pathway differences in the various brain regions in a monogenic in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease

Publication Title

Dysregulation of gene expression in a lysosomal storage disease varies between brain regions implicating unexpected mechanisms of neuropathology.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE76283
Expression data of Normal versus Mutant MPS VII Bl6 mouse
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

We used microarray to detect pathway differences in the hippocampus in mucopolysaccharidosis type VII ( MPS VII ), a mouse model of a lysosomal storage disease

Publication Title

Integrated analysis of proteome and transcriptome changes in the mucopolysaccharidosis type VII mouse hippocampus.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE5127
Gene Expression Biomarkers for Predicting Lung Tumors in Two-Year Rodent Bioassays
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Two-year rodent bioassays play a central role in evaluating both the carcinogenic potential of a chemical and generating quantitative information on the dose-response behavior for chemical risk assessments. The bioassays involved are expensive and time-consuming, requiring nearly lifetime exposures (two years) in mice and rats and costing $2 to $4 million per chemical. Since there are approximately 80,000 chemicals registered for commercial use in the United States and 2,000 more are added each year, applying animal bioassays to all chemicals of concern is clearly impossible. To efficiently and economically identify carcinogens prior to widespread use and human exposure, alternatives to the two-year rodent bioassay must be developed. In this study, animals were exposed for 13 weeks to two chemicals that were positive for lung tumors in the two-year rodent bioassay, two chemicals that were negative for tumors, and two vehicle controls. Gene expression analysis was performed on the lungs of the animals to assess the potential for identifying gene expression biomarkers that can predict tumor formation in a two-year bioassay following a 13 week exposure.

Publication Title

A comparison of transcriptomic and metabonomic technologies for identifying biomarkers predictive of two-year rodent cancer bioassays.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE5128
Gene Expression Biomarkers for Predicting Liver Tumors in Two-Year Rodent Bioassays
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Two-year rodent bioassays play a central role in evaluating both the carcinogenic potential of a chemical and generating quantitative information on the dose-response behavior for chemical risk assessments. The bioassays involved are expensive and time-consuming, requiring nearly lifetime exposures (two years) in mice and rats and costing $2 to $4 million per chemical. Since there are approximately 80,000 chemicals registered for commercial use in the United States and 2,000 more are added each year, applying animal bioassays to all chemicals of concern is clearly impossible. To efficiently and economically identify carcinogens prior to widespread use and human exposure, alternatives to the two-year rodent bioassay must be developed. In this study, animals were exposed for 13 weeks to two chemicals that were positive for liver tumors in the two-year rodent bioassay, two chemicals that were negative for liver tumors, and two vehicle controls. Gene expression analysis was performed on the livers of the animals to assess the potential for identifying gene expression biomarkers that can predict tumor formation in a two-year bioassay following a 13 week exposure.

Publication Title

A comparison of transcriptomic and metabonomic technologies for identifying biomarkers predictive of two-year rodent cancer bioassays.

Sample Metadata Fields

Sex, Age, Subject

View Samples
accession-icon GSE31281
Gene expression data from livers of Yap+/+ and Yap+/- mice at postnatal day 30
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Liver undergoes both size increase and differentiation during postnatal period, which in mice is approximately first 30 days. The mechanisms of simultaneous postnatal liver cell proliferation and maturation are not clear. In these experiments, role of yes associated protein (Yap), the downstream effector of Hippo Kinase signaling pathway was investigated.

Publication Title

Yes-associated protein is involved in proliferation and differentiation during postnatal liver development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE30465
Asymmetric cancer cell division regulated by AKT, Reactive Oxygen Species (ROS) high versus ROS low mRNA
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human tumors often contain slowly proliferating cancer cells that resist treatment but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating G0-like progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.

Publication Title

Asymmetric cancer cell division regulated by AKT.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP154146
ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms
  • organism-icon Mus musculus
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We examined the impact of Abca1 deficiency and APOE isoform expression on the response to TBI using 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi collected at 14 days post-injury, followed by genome-wide differential gene expression analysis. Overall design: We used 3-months-old, human APOE3+/+ (E3/Abca1+/+) and APOE4+/+ (E4/Abca1+/+) targeted replacement mice, and APOE3+/+ and APOE4+/+ mice with only one functional copy of the Abca1 gene (E3/Abca1+/-; E4/Abca1+/-). Groups consisted of 6-8 animals of both genders. TBI-treated mice received a craniotomy followed by a controlled cortical impact (CCI) brain injury in the left hemisphere; sham-treated mice received the same surgical procedure without the impact. We performed RNA-seq using samples from cortices and hippocampi collected at 14 days post-injury from 58 samples, followed by genome-wide differential gene expression analysis.

Publication Title

ABCA1 haplodeficiency affects the brain transcriptome following traumatic brain injury in mice expressing human APOE isoforms.

Sample Metadata Fields

Sex, Treatment, Subject

View Samples
accession-icon GSE3697
Treatment of heat shocked HeLa cells with siRNA (siHSF1#1)
  • organism-icon Homo sapiens
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Although HSF1 is known to play an important role in regulating the cellular response to proteotoxic stressors, little is known about the structure and function of the HSF1 signaling network under both stressed and unstressed conditions. In this study, we used a combination of chromatin immunoprecipitation (ChIP) microarray analysis and time course gene expression microarray analysis with and without siRNA-mediated inhibition of HSF1 comprehensively identify genes directly and indirectly regulated by HSF1 and examine the structure of the extended HSF1 signaling network. Correlation between promoter binding and gene expression was not significant for all genes bound by HSF1 suggesting that HSF1 binding per se is not sufficient for expression. However, the correlation with promoter binding was significant for genes identified as HSF1-regulated following siRNA knockdown allowing the identification of direct transcriptional targets of HSF1. Among promoters bound by HSF1 following heat shock, a gene ontology (GO) analysis showed significant enrichment only in categories related to protein folding. In contrast, analysis of the extended HSF1 signaling network showed enrichment in a variety of categories related to protein folding, anti-apoptosis, RNA splicing, ubiquitination and others, highlighting a complex transcriptional program directly and indirectly regulated by HSF1.

Publication Title

Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP001455
C. elegans small RNAs
  • organism-icon Caenorhabditis elegans
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer

Description

High throughput sequencing to derive function of cde-1 in endogenous RNAi in C. elegans Overall design: Small RNAs were cloned from C. elegans adults, following removal of tri-phosphate groups from 5'' end. Sequencing was performed using the Illumina 1G platform.

Publication Title

CDE-1 affects chromosome segregation through uridylation of CSR-1-bound siRNAs.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon E-ATMX-34
Transcription profiling by array of Arabidopsis infected with geminivirus Cabbage leaf curl virus
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Effect of geminivirus Cabbage leaf curl virus on Arabidopsis Col-0 at 12 days post-inoculation during short day conditions.

Publication Title

Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact