refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon SRP063333
Syncytiotrophoblast generation from human pluripotent stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Purpose: Syncytiotrophoblast (STB) is a multi-nucleated, terminally differentiated syncytium that covers the surface of the villous placenta and forms the major interface with maternal blood. It releases placental hormones and plays a primary role in exchange of gases, nutrients and waste products. Alterations in STB development and turnover have been implicated in placental diseases, including preeclampsia (PE). In vitro cell models are badly needed to study STB development and physiology due to inaccessibility to placental tissues during gestation. To establish in vitro STB model system, we generate STB and its mononucleated precursors from human embryonic stem cells (hESC) and profile for RNA content by RNAseq. Methods: H1 Human ESC (WA01) were treated with BMP4, the ALK4/5/7 inhibitor (A83-01), and the FGF2 signaling inhibitor (PD173074) (BAP) to direct them to the trophoblast lineage and provided both STB and extravillous trophoblast. Syncytial areas emerged at day 8 BAP treatment ranged in diameter from ~40 µm to > 100 µm. The intact syncytial areas were isolated by sieving successively through 70 µm and 40 µm mesh cell strainers. The captured cells are recovered by inverting the strainer and rinsing with culture medium to separate large (>70 µm) and middle size cell sheets (40-70 µm). The fraction that passes through both sieves represents cells of smallest diameter (< 40 µm), presumably cytotrophoblast. Total 12 RNA samples from triplicate three size-fractioned BAP treated and three untreated hESC cultured in a FGF2 supplemented medium in parallel were analyzed. Results: The larger > 70 µm areas stained positively for STB markers while ultrastructural analysis clearly revealed multi-nuclear cells with an extensive cytoplasm containing many prominent secretion granules. The larger STB areas also had a larger DNA content that > 70 µm fraction contained 37 times more nuclear content and 40-70 µm fraction did 16 times more. Compared to the < 40 µm cell fraction, these larger cells over-expressed a full repertoire of genes characteristic of STB, e.g. CGA, CGB, PGF, ERVW1, GCM1. The smallest cell fraction had a DNA content consistent with mononuclear diploid cells, contained few secretory granules, and were only weakly positive for STB markers. Conclusion: The data are consistent with the > 70 µm cells being mature STB, while the intermediate fraction may represent a precursor population. Human ESC directed along the trophoblast lineage by BAP treatment offers a useful model for following STB formation in vitro and suggest that this protocol may have utility in studying the basis of certain placental diseases, especially preeclampsia, where placental tissue isolated at term or after pregnancy terminations can only offer limited information. Overall design: Three size fraction mRNA profiles of syncytial areas emerged at day 8 BAP treatment of hESC were generated by deep sequencing along with untreated hESC, in triplicate, using Illumina HiSeq 2500.

Publication Title

Comparison of syncytiotrophoblast generated from human embryonic stem cells and from term placentas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87638
Comprehensive DNA Microarray Analysis for the Gene Sets Involved in Allergic Reaction by Allergic Effector Cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mast cells, basophils, and eosinophils play an important role in allergic disorders as effector cells. These cells secrete abundant serine proteases as well as chemical mediators and cytokines. Various serine proteases including SLPI are also important for to regulate an allergic response in these effector cells, although the expression profiles and functions of these proteases still remain unclear.

Publication Title

Identification of Secretory Leukoprotease Inhibitor As an Endogenous Negative Regulator in Allergic Effector Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE20196
Gene expression profile of poorly differentiated synovial sarcoma
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Poorly differentiated type synovial sarcoma (PDSS) is a variant of synovial sarcoma characterized by predominantly round or short-spindled cells. Although accumulating evidence from clinicopathological studies suggests a strong association between this variant of synovial sarcoma and poor prognosis, little has been reported on the molecular basis of PDSS. To gain insight into the mechanism(s) that underlie the emergence of PDSS, we analyzed the gene expression profiles of 34 synovial sarcoma clinical samples, including 5 cases of PDSS, using an oligonucleotide microarray. In an unsupervised analysis, the 34 samples fell into 3 groups that correlated highly with histological subtype, namely, monophasic, biphasic, and poorly differentiated types. PDSS was characterized by down-regulation of genes associated with neuronal and skeletal development and cell adhesion, and up-regulation of genes on a specific chromosomal locus, 8q21.11. This locus-specific transcriptional activation in PDSS was confirmed by reverse transcriptase (RT)-PCR analysis of 9 additional synovial sarcoma samples. Our results indicate that PDSS tumors constitute a distinct genetic group based on expression profiles.

Publication Title

Gene expression profiling of synovial sarcoma: distinct signature of poorly differentiated type.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE11128
Expression data from single cells from mouse primordial germ cell lineage (E6.25-E8.25, wild type and Blimp1KO)
  • organism-icon Mus musculus
  • sample-icon 105 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Specification of germ cell fate is fundamental in development. With a highly representative single-cell microarray and rigorous quantitative-PCR analysis, we defined the genome-wide transcription dynamics that create primordial germ cells (PGCs) from the epiblast, a process that exclusively segregates them from their somatic neighbors. We also analyzed the effect of the loss of Blimp1, a key transcriptional regulator, on these dynamics. Our analysis revealed that PGC specification involves complex, yet highly ordered regulation of a large number of genes, proceeding under the strong influence of mesoderm induction with active repression of specific programs such as epithelial-mesenchymal transition, Hox gene activation, cell-cycle progression and DNA methyltransferase machinery. Remarkably, Blimp1 is essential for repressing nearly all the genes normally down-regulated in PGCs relative to their somatic neighbors, whereas it is dispensable for the activation of approximately half of the genes up-regulated in PGCs.

Publication Title

Complex genome-wide transcription dynamics orchestrated by Blimp1 for the specification of the germ cell lineage in mice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE46855
Induction of the mouse germ cell fate by transcription factors in vitro
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Induction of mouse germ-cell fate by transcription factors in vitro.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE43775
Induction of the mouse germ cell fate by transcription factors in vitro [exp1]
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The germ cell lineage ensures the continuity of life through the generation of male and female gametes, which unite to form a totipotent zygote. We have established a culture system that recapitulates the mouse germ-cell specification pathway: Using cytokines, embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) are induced into epiblast-like cells (EpiLCs) and then into primordial germ cell-like cells (PGCLCs) with capacity both for spermatogenesis and oogenesis, creating an opportunity for understanding and regulating mammalian germ cell development in both sexes in vitro. Here we show that, without cytokines, simultaneous over-expression of three transcription factors (TFs), Blimp1 (also known as Prdm1), Prdm14 and Tfap2c (also known as AP2), directs EpiLCs, but not ESCs, swiftly and highly efficiently into a PGC state with endogenous transcription circuitry. The induction of the PGC state on EpiLCs minimally requires Prdm14 but not Blimp1 or Tfap2c. The TF-induced PGC state reconstitutes key transcriptome and epigenetic reprogramming in PGCs, but bypasses a mesodermal program that accompanies PGC specification in vivo and in vitro by cytokines including BMP4. Importantly, the TF-induced PGC-like cells robustly contribute to spermatogenesis and fertile offspring. Our findings provide not only a novel insight into the transcriptional logic that creates a germ cell state, but also a foundation for the TF-based reconstitution and regulation of mammalian gametogenesis.

Publication Title

Induction of mouse germ-cell fate by transcription factors in vitro.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE46854
Induction of the mouse germ cell fate by transcription factors in vitro [exp2]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The germ cell lineage ensures the continuity of life through the generation of male and female gametes, which unite to form a totipotent zygote. We have established a culture system that recapitulates the mouse germ-cell specification pathway: Using cytokines, embryonic stem cells (ESCs)/induced pluripotent stem cells (iPSCs) are induced into epiblast-like cells (EpiLCs) and then into primordial germ cell-like cells (PGCLCs) with capacity both for spermatogenesis and oogenesis, creating an opportunity for understanding and regulating mammalian germ cell development in both sexes in vitro. Here we show that, without cytokines, simultaneous over-expression of three transcription factors (TFs), Blimp1 (also known as Prdm1), Prdm14 and Tfap2c (also known as AP2), directs EpiLCs, but not ESCs, swiftly and highly efficiently into a PGC state with endogenous transcription circuitry. The induction of the PGC state on EpiLCs minimally requires Prdm14 but not Blimp1 or Tfap2c. The TF-induced PGC state reconstitutes key transcriptome and epigenetic reprogramming in PGCs, but bypasses a mesodermal program that accompanies PGC specification in vivo and in vitro by cytokines including BMP4. Importantly, the TF-induced PGC-like cells robustly contribute to spermatogenesis and fertile offspring. Our findings provide not only a novel insight into the transcriptional logic that creates a germ cell state, but also a foundation for the TF-based reconstitution and regulation of mammalian gametogenesis.

Publication Title

Induction of mouse germ-cell fate by transcription factors in vitro.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE4309
An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4307
Expression data from single cells from ICMs of mouse blastocysts at E3.5
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The inner cell mass (ICM) of the early blastocyst at E3.5, a source of ES cell derivation, is a morphologically homogeneous population of undifferentiated pluripotent cells that give rise to all embryonic lineages. The immediate application of the newly developed V1V3 method to single cells in this stage of mouse embryos revealed the presence of two populations of cells, one with primitive endoderm expression and the other with pluripotent epiblast-like gene expression. The genes expressed differentially between these two populations were well preserved in morphologically differentiated primitive endoderm and epiblast in the embryos one day later (E4.5), demonstrating that the method successfully detects subtle but essential differences in gene expression at the single-cell level among seemingly homogeneous cell populations. This study provides a strategy to analyze biophysical events in medicine as well as in neural, stem cell, and developmental biology, where small numbers of distinctive or diseased cells play critical roles.

Publication Title

An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE4308
Expression data for validation of single cell cDNA amplification method (V1V3 method)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

A systems-level understanding of a small but essential population of cells in development or adulthood (e.g., somatic stem cells) requires accurate quantitative monitoring of genome-wide gene expression, ideally from single cells. We report here a strategy to globally amplify mRNAs from single cells for highly quantitative high-density oligonucleotide microarray analysis that combines a small number of directional PCR cycles with subsequent linear amplification. Using this strategy, both the representation of gene expression profiles and reproducibility between individual experiments are unambiguously improved from the original method, along with high coverage and accuracy.

Publication Title

An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact