refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Technology

Platform

accession-icon GSE108137
Snail-dependent epithelial splicing regulatory protein 1 (ESRP1) silencing drives malignant transformation of human pulmonary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Silencing the Snail-Dependent RNA Splice Regulator ESRP1 Drives Malignant Transformation of Human Pulmonary Epithelial Cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE12477
A combinatorial code for pattern formation in Drosophila oogenesis
  • organism-icon Drosophila melanogaster
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Two-dimensional patterning of the follicular epithelium in Drosophila oogenesis is required for the formation of three-dimensional eggshell structures. Our analysis of a large number of published gene expression patterns in the follicle cells suggests that they follow a simple combinatorial code based on six spatial building blocks and the operations of union, difference, intersection, and addition. The building blocks are related to the distribution of inductive signals, provided by the highly conserved epidermal growth factor receptor and Decapentaplegic

Publication Title

A combinatorial code for pattern formation in Drosophila oogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58014
Expression arrays of inflammatory Ly6C+ monocytes in mice primary or secondary challenged with Listeria monocytogenes
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

In this study we investigated the mechanisms involved in memory T-cell mediated protection using mice vaccinated with the intracellular bacterium Listeria monocytogenes. Our working hypothesis was that rapid activation of cells of the innate immune system, in particular inflammatory Ly6C+ monocytes, were essential in effective protection, in a memory T cell-dependent manner. Thus we generated a comprehensive comparison of the genetic program of activated Ly6C+ monocytes during a primary or a secondary infection with Listeria monocytogenes, at 8 hours post challenge infection.

Publication Title

Memory-T-cell-derived interferon-γ instructs potent innate cell activation for protective immunity.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9199
Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype
  • organism-icon Mus musculus
  • sample-icon 50 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Understanding the molecular underpinnings of cancer is of critical importance to developing targeted intervention strategies. Identification of such targets, however, is notoriously difficult and unpredictable. Malignant cell transformation requires the cooperation of a few oncogenic mutations that cause substantial reorganization of many cell features and induce complex changes in gene expression patterns. Genes critical to this multi-faceted cellular phenotype thus only have been identified following signaling pathway analysis or on an ad hoc basis. Our observations that cell transformation by cooperating oncogenic lesions depends on synergistic modulation of downstream signaling circuitry suggest that malignant transformation is a highly cooperative process, involving synergy at multiple levels of regulation, including gene expression. Here we show that a large proportion of genes controlled synergistically by loss-of-function p53 and Ras activation are critical to the malignant state. Remarkably, 14 among 24 such 'cooperation response genes' (CRGs) were found to contribute to tumor formation in gene perturbation experiments. In contrast, only one in 14 perturbations of genes responding in a non-synergistic manner had a similar effect. Synergistic control of gene expression by oncogenic mutations thus emerges as an underlying key to malignancy and provides an attractive rationale for identifying intervention targets in gene networks downstream of oncogenic gain and loss-of-function mutations.

Publication Title

Synergistic response to oncogenic mutations defines gene class critical to cancer phenotype.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE146725
Expression data from Canton-S and D18 adult flies
  • organism-icon Drosophila melanogaster
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Even after decades of living in the same laboratory environment two Drosophila melanogaster strains originating from North America (Canton-S) and Central Russia (D18) demonstrate a few differentially expressed genes some of which may be important for local adaptation (e.g. genes responsible for insecticide resistance). Genes with different level of expression between Canton-S and D18 strains belong to important metabolic pathways, for instance energy metabolism, carbohydrate metabolic process, locomotion, body temperature rhythm regulation and tracheal network architecture.

Publication Title

Transcriptome analysis of <i>Drosophila melanogaster</i> laboratory strains of different geographical origin after long-term laboratory maintenance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP103765
EpCAM controls morphogenetic programs during zebrafish pronephros development
  • organism-icon Danio rerio
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaHiSeq4000

Description

Epithelial cell adhesion molecule EpCAM is a transmembrane glycoprotein that is dynamically expressed in human and murine renal epithelia during development. The levels of EpCAM in the renal epithelium are upregulated both during regeneration after ischemia/reperfusion injury and in renal-derived carcinomas. The role of EpCAM in early kidney development, however, has remained unclear. To identify potential programs and signaling pathways that are controlled by EpCAM during pronephros development, we developed a method to study the transcriptomes of specific pronephric segments. Combining laser capture microdissection (LCM) with RNA sequencing (RNA-seq), we generated genome-wide transcriptional profiles of the distal late tubules of wild type and EpCAM-deficient embryos. Overall design: RNA-seq of LCM-dissected pronephric cells from EpCAM-deficient and control zebrafish embryos

Publication Title

EpCAM controls morphogenetic programs during zebrafish pronephros development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE6203
Rus etal High Na Arabidopsis accessions mapping HKT1
  • organism-icon Arabidopsis thaliana
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Background:

Publication Title

Natural variants of AtHKT1 enhance Na+ accumulation in two wild populations of Arabidopsis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-1681
Transcription profiling of mouse lymphoblast cell line L1210 to validate replication timing experiments
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

In this experiment, total RNA was extracted from asynchronous population of L1210 cells and hybridized to Affymetrix 430A 2.0 arrays in order to obtain an expression profile of these cells. We have previously mapped the replication timing of the entire mouse genome in this cell line, using mouse CGH arrays (see E-MEXP-1022). We wanted to validate in our system the known correlation between early replication and expression and to analyze its extent. To this end, we have measured the expression in the same cell line (L1210 cells). Two biological replicates were hybridized to 2 identical microarrays. Expression levels were highly similar between the 2 replicates (r=0.98).

Publication Title

Global organization of replication time zones of the mouse genome.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE70077
RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Polycomb group (PcG) proteins play a pivotal role in silencing developmental genes and help to maintain various stem and precursor cells and regulate their differentiation. PcG factors also regulate dynamic and complex regional specification, particularly in mammals, but this activity is mechanistically not well understood. In this study, we focused on proximal-distal (PD) patterning of the mouse forelimb bud to elucidate how PcG factors contribute to a regional specification process that depends on developmental signals. Depletion of the RING1 proteins RING1A (RING1) and RING1B (RNF2), which are essential components of Polycomb repressive complex 1 (PRC1), led to severe defects in forelimb formation along the PD axis. We show that preferential defects in early distal specification in Ring1A/B-deficient forelimb buds accompany failures in the repression of proximal signal circuitry bound by RING1B, including Meis1/2, and the activation of distal signal circuitry in the prospective distal region. Additional deletion of Meis2 induced partial restoration of the distal gene expression and limb formation seen in the Ring1A/B-deficient mice, suggesting a crucial role for RING1-dependent repression of Meis2 and likely also Meis1 for distal specification. We suggest that the RING1-MEIS1/2 axis is regulated by early PD signals and contributes to the initiation or maintenance of the distal signal circuitry.

Publication Title

RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE70075
RING1 links retinoic acid signaling to the early proximal-distal specification of forelimb bud via Meis2 repression (mRNA)
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Polycomb group (PcG) proteins play a pivotal role in silencing of development-related genes and contribute to maintain various stem and precursor cells and regulate their differentiation. However, it is not well understood how PcG factors regulate dynamic and complex morphogenetic processes particularly in mammals. In this study, we focused on proximal-distal (PD) patterning of forelimb bud to elucidate how PcG factors contribute to regulation of morphogenetic processes that depends on developmental signals. Depletion of RING1 proteins, which are common components of both canonical and variant Polycomb repressive complex-1 (PRC1), led to dramatic deficiencies in forelimb formation.

Publication Title

RING1 proteins contribute to early proximal-distal specification of the forelimb bud by restricting Meis2 expression.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact