refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 104 results
Sort by

Filters

Technology

Platform

accession-icon GSE79867
Transcriptomic responses of the liver and adipose tissues to altered carbohydrate-fat ratio in diet: An isoenergetic study in young rats
  • organism-icon Rattus norvegicus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

To elucidate the effects of altered dietary carbohydrate and fat balance on liver and adipose tissue transcriptomes,

Publication Title

Transcriptomic responses of the liver and adipose tissues to altered carbohydrate-fat ratio in diet: an isoenergetic study in young rats.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE52644
Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages
  • organism-icon Mus musculus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To elucidate the effect of the polyphenols contained in alcoholic beverages on the metabolic stress induced by ethanol consumption, four groups of mice were fed for five weeks on Lieber's diet with or without ethanol, with ethanol plus ellagic acid, and with ethanol plus trans-resveratrol. Alcoholic fatty liver was observed in the group fed the ethanol diet but not in those fed the ethanol plus polyphenol diets. Liver transcriptome analysis revealed that the addition of the polyphenols suppressed the expression of the genes related to cell stress that were up-regulated by ethanol alone. Conversely, the polyphenols up-regulated the genes involved in bile acid synthesis, unsaturated fatty acid elongation, and tetrahydrofolate synthesis that were down-regulated by ethanol alone. Because parts of these genes were known to be regulated by the constitutive androstane receptor (CAR), we performed the same experiment in the CAR-deficient mice. As a result, fatty liver was observed not only in the ethanol group but also with the ethanol plus polyphenol groups. In addition, there was no segregation of the gene expression profiles among these groups. These results provide a molecular basis for the prevention of alcohol-induced stress by the polyphenols in alcoholic beverages.

Publication Title

Nuclear receptor-mediated alleviation of alcoholic fatty liver by polyphenols contained in alcoholic beverages.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE73266
Gene expression profiling of mice given orally a supplement with special amino acid composition of Vespa larval saliva origin
  • organism-icon Mus musculus
  • sample-icon 78 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Coordinated regulation of hepatic and adipose tissue transcriptomes by the oral administration of an amino acid mixture simulating the larval saliva of Vespa species.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE80630
Effect of maple syrup extract high on the liver of mice fed a high-fat diet.
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE73264
Gene expression profiling of mice given orally a supplement with special amino acid composition of Vespa larval saliva origin (DW vs VAAM)
  • organism-icon Mus musculus
  • sample-icon 42 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

VAAM stands for an amino acid mixture simulating the composition of Vespa, a hornet larval saliva. We conducted a comparative study on metabolism-regulatory roles of VAAM, casein-simulating amino acid mixture (CAAM), and pure water on murine hepatic and adipose tissue transcriptomes. Mice were orally fed VAAM solution ( 0.675 g/ kg BW = 2% of food-derived amino acids = 0.38% of total food energy/ day), CAAM solution ( 0.675 g / kg BW/ day) or water under ad libitum for five days. Hepatic transcriptome comparison of VAAM, CAAM and water-treated groups revealed a VAAM-specific regulation of the metabolic pathway, i.e., the down-regulation of glycolysis and fatty acid oxidation, and up-regulation of poly unsaturated fatty acid synthesis and glycogenic amino acids utilization in TCA cycle. Similar transcriptomic analysis of white and brown adipose tissues (WAT and BAT) suggested the up-regulation of phospholipid synthesis in WAT and the negative regulation of cellular processes in BAT. Because these coordinated regulations of tissue transcriptomes implicated the presence of upstream signaling common to these tissues, we conducted Ingenuity Pathways Analysis of these transcriptomes with the results that estrogenic and glucagon signals seemed to be activated in liver and WAT as well as beta-adrenergic signaling did in the three tissues by administration of VAAM. Our data provide a clue to understanding the role of VAAM in metabolic regulation of multiple tissues.

Publication Title

Coordinated regulation of hepatic and adipose tissue transcriptomes by the oral administration of an amino acid mixture simulating the larval saliva of Vespa species.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE73265
Gene expression profiling of mice given orally a supplement with special amino acid composition of Vespa larval saliva origin (DW vs CAAM)
  • organism-icon Mus musculus
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

VAAM stands for an amino acid mixture simulating the composition of Vespa, a hornet larval saliva. We conducted a comparative study on metabolism-regulatory roles of VAAM, casein-simulating amino acid mixture (CAAM), and pure water on murine hepatic and adipose tissue transcriptomes. Mice were orally fed VAAM solution ( 0.675 g/ kg BW = 2% of food-derived amino acids = 0.38% of total food energy/ day), CAAM solution ( 0.675 g / kg BW/ day) or water under ad libitum for five days. Hepatic transcriptome comparison of VAAM, CAAM and water-treated groups revealed a VAAM-specific regulation of the metabolic pathway, i.e., the down-regulation of glycolysis and fatty acid oxidation, and up-regulation of poly unsaturated fatty acid synthesis and glycogenic amino acids utilization in TCA cycle. Similar transcriptomic analysis of white and brown adipose tissues (WAT and BAT) suggested the up-regulation of phospholipid synthesis in WAT and the negative regulation of cellular processes in BAT. Because these coordinated regulations of tissue transcriptomes implicated the presence of upstream signaling common to these tissues, we conducted Ingenuity Pathways Analysis of these transcriptomes with the results that estrogenic and glucagon signals seemed to be activated in liver and WAT as well as beta-adrenergic signaling did in the three tissues by administration of VAAM. Our data provide a clue to understanding the role of VAAM in metabolic regulation of multiple tissues.

Publication Title

Coordinated regulation of hepatic and adipose tissue transcriptomes by the oral administration of an amino acid mixture simulating the larval saliva of Vespa species.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE80628
Effect of maple syrup extract high on the liver of mice fed a high-fat diet [III]
  • organism-icon Mus musculus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The effects of the administration of maple syrup extract (MSXH) on hepatic gene expression were investigated in mice fed high-fat diet.

Publication Title

Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE80627
Effect of maple syrup extract high on the liver of mice fed a high-fat diet [II]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The effects of the administration of maple syrup extract (MSXH) on hepatic gene expression were investigated in mice fed high-fat diet.

Publication Title

Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE80626
Effect of maple syrup extract high on the liver of mice fed a high-fat diet [I]
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The effects of the administration of maple syrup extract (MSXH) on hepatic gene expression were investigated in mice fed high-fat diet.

Publication Title

Quantitative deviating effects of maple syrup extract supplementation on the hepatic gene expression of mice fed a high-fat diet.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE84844
Multi-omics profiling of patients with primary Sjogren's syndrome
  • organism-icon Homo sapiens
  • sample-icon 56 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Multi-omics study was conducted to elucidate the crucial molecular mechanisms of primary Sjgrens syndrome (SS) pathology. We generated multiple data set from well-defined patients with SS, which includes whole-blood transcriptomes, serum proteomes and peripheral immunophenotyping. Based on our newly generated data, we performed an extensive bioinformatic investigation. Our integrative analysis identified SS gene signatures (SGS) dysregulated in widespread omics layers, including epigenomes, mRNAs and proteins. SGS predominantly involved the interferon signature and ADAMs substrates. Besides, SGS was significantly overlapped with SS-causing genes indicated by a genome-wide association study and expression trait loci analyses. Combining the molecular signatures with immunophenotypic profiles revealed that cytotoxic CD8 T cells were associated with SGS. Further, we observed the activation of SGS in cytotoxic CD8 T cells isolated from patients with SS. Our multi-omics investigation identified gene signatures deeply associated with SS pathology and showed the involvement of cytotoxic CD8 T cells. These integrative relations across multiple layers will facilitate our understanding of SS at the system level.

Publication Title

Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren's syndrome.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact