refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE78107
Expression data from serum-starved human umbilical vein endothelial cells that have been treated with scrambled (scr) or Map4k4 siRNA to knock down genes of interest 48 hours prior to harvest
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

We identified that knocking down Map4k4 in endothelial cells affected genes associated with the cell cycle, mitosis, and inflammatory genes.

Publication Title

Endothelial Mitogen-Activated Protein Kinase Kinase Kinase Kinase 4 Is Critical for Lymphatic Vascular Development and Function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE25908
Distinct Protein Degradation Induced by Different Disuse Models of Skeletal Muscle Atrophy
  • organism-icon Mus musculus
  • sample-icon 111 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Skeletal muscle atrophy is a consequence of many diseases, environmental insults, inactivity, age and injury. Atrophy is characterized by active degradation and removal of contractile proteins and a reduction in fiber size. Animal models have been extensively used to identify pathways leading to atrophic conditions. Here we have used genome-wide expression profiling analysis and quantitative PCR to identify the molecular changes that occur in two clinically relevant animal mouse models of muscle atrophy, hindlimb casting and Achilles tendon laceration (tenotomy). Gastrocnemius muscle samples were collected 2, 7 and 14 days after insult. The total amount of muscle loss as measured by wet weight and muscle fiber size was equivalent between models, although tenotomy resulted in a more rapid induction of muscle atrophy. Furthermore, tentomy resulted in the regulation of significantly more mRNA transcripts then casting. Analysis of the regulated genes and pathways suggest that the mechanism of atrophy is distinct between these models. The degradation following casting appears ubiquitin-proteasome-mediated while degradation following tenotomy appears lysosomal and matrix-metalloproteinase (MMP)-mediated. This data suggests that there are multiple mechanisms leading to muscle atrophy and that specific therapeutic agents may be necessary to combat the atrophy seen under different conditions.

Publication Title

Distinct protein degradation profiles are induced by different disuse models of skeletal muscle atrophy.

Sample Metadata Fields

Sex, Specimen part, Treatment, Time

View Samples
accession-icon GSE17439
Global gene-expression analyses of the Eset knock-down ES cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Mouse Ref-6 V1

Description

The histone H3 lysine 9 (H3K9) methyltransferase Eset is an epigenetic regulator critical for the development of the inner cell mass (ICM). Although ICM-derived embryonic stem (ES) cells are normally unable to contribute to the trophectoderm (TE) in blastocysts, we find that depletion of Eset by shRNAs leads to differentiation with the formation of trophoblast-like cells and induction of trophoblast-associated gene expression. Using ChIP-seq analyses, we identified Eset target genes with Eset-dependent H3K9 trimethylation. We confirmed that genes that are preferentially expressed in the TE (Tcfap2a and Cdx2) are bound and repressed by Eset. Single cell PCR analysis shows that the expression of Cdx2 and Tcfap2a is also induced in Eset-depleted morula cells. Importantly, Eset-depleted cells can incorporate into the TE of a blastocyst and subsequently placental tissues. Co-immunoprecipitation and ChIP assays further demonstrates that Eset interacts with Oct4, which in turn recruits Eset to silence these trophoblast-associated genes. Our result suggests that Eset restricts the extraembryonic trophoblast lineage potential of pluripotent cells and links an epigenetic regulator to key cell fate decision through a pluripotency factor.

Publication Title

Eset partners with Oct4 to restrict extraembryonic trophoblast lineage potential in embryonic stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13190
Global gene-expression analyses of the Esrrb reprogrammed cells and Esrrb knockdown cells
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming.

Publication Title

Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13212
Global gene-expression analyses of the Esrrb knockdown cells
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming.

Publication Title

Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE13211
Global gene-expression analyses of the Esrrb reprogrammed cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina mouse-6 v1.1 expression beadchip

Description

In the murine system, Oct4, Sox2, c-Myc and Klf4 are sufficient to convert fibroblasts to induced pluripotent stem (iPS) cells that exhibit many characteristics of embryonic stem (ES) cells. Herein, we show that the orphan nuclear receptor Esrrb works in conjunction with Oct4 and Sox2 to mediate reprogramming of mouse embryonic fibroblasts (MEFs) to iPS cells. Esrrb reprogrammed cells share similar expression and epigenetic signatures as ES cells. These cells are also pluripotent and can differentiate in vitro and in vivo into the three major embryonic cell lineages. Furthermore, these cells contribute to mouse chimeras and are germline transmissible. In ES cells, Esrrb targets many genes involved in selfrenewal and pluripotency. This suggests that Esrrb may mediate reprogramming through the up-regulation of ES cell-specific genes. Our findings also indicate that it is possible to reprogram MEFs without exogenous Klf transcription factors and link a nuclear receptor to somatic cell reprogramming.

Publication Title

Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact