refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon SRP181859
Human colon organoids reveal distinct physiologic and oncogenic Wnt responses II
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Constitutive Wnt activation upon loss of Adenoma polyposis coli (APC) acts as main driver of colorectal cancers (CRC). Targeting Wnt signaling has proven difficult because the pathway is crucial for homeostasis and stem cell renewal. To distinguish oncogenic from physiologic Wnt activity, we have performed comprehensive transcriptome and proteome profiling in human colon organoids. Culture in the presence or absence of exogenous ligand allowed us to discriminate receptor-mediated signaling from the effects of CRISPR/Cas9 induced APC loss. We could catalogue two non-overlapping molecular signatures that were stable at distinct levels of stimulation. Newly identified markers for normal colon stem/progenitor cells and adenomas were validated by immunohistochemistry and flow cytometry. We found that oncogenic Wnt signals are associated with good prognosis in tumors of the consensus molecular subtype 2 (CMS2). In contrast, receptor-mediated signaling was linked to CMS4 tumors and poor prognosis. Together, our data represent a valuable resource for biomarkers that allow more precise stratification of Wnt responses in CRC. Overall design: Culturing normal and CRISPR/Cas9 engineered APC mutant isogenic organoid lines in the presence or absence of Wnt-stimulation, followed by transcriptome and proteome profiling allowed for the stratification of physiologic and oncogenic Wnt responses.

Publication Title

Human colon organoids reveal distinct physiologic and oncogenic Wnt responses.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP181198
Human colon organoids reveal distinct physiologic and oncogenic Wnt responses
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Constitutive Wnt activation upon loss of Adenoma polyposis coli (APC) acts as main driver of colorectal cancers (CRC). Targeting Wnt signaling has proven difficult because the pathway is crucial for homeostasis and stem cell renewal. To distinguish oncogenic from physiologic Wnt activity, we have performed comprehensive transcriptome and proteome profiling in human colon organoids. Culture in the presence or absence of exogenous ligand allowed us to discriminate receptor-mediated signaling from the effects of CRISPR/Cas9 induced APC loss. We could catalogue two non-overlapping molecular signatures that were stable at distinct levels of stimulation. Newly identified markers for normal colon stem/progenitor cells and adenomas were validated by immunohistochemistry and flow cytometry. We found that oncogenic Wnt signals are associated with good prognosis in tumors of the consensus molecular subtype 2 (CMS2). In contrast, receptor-mediated signaling was linked to CMS4 tumors and poor prognosis. Together, our data represent a valuable resource for biomarkers that allow more precise stratification of Wnt responses in CRC. Overall design: Culturing normal and CRISPR/Cas9 engineered APC mutant isogenic organoid lines in the presence or absence of Wnt-stimulation, followed by transcriptome and proteome profiling allowed for the stratification of physiologic and oncogenic Wnt responses.

Publication Title

Human colon organoids reveal distinct physiologic and oncogenic Wnt responses.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE15105
Probing gene misregulation in bodyguard, lacerata and fiddlehead mutants
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Although bodyguard (bdg), lacerata (lcr) and fiddlehead (fdh) mutations affect three unrelated genes, they trigger similar effects, i.e. ectopic organ fusion, increase of cuticle permeability. After performing cutin and wax analyses on these Arabidopsis thaliana mutants, which did not coincide with the putative enzyme functions, we hypothesised that these mutations trigger a complex response which may be visible at the transcriptional level.

Publication Title

Dissection of the complex phenotype in cuticular mutants of Arabidopsis reveals a role of SERRATE as a mediator.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact