refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 27 results
Sort by

Filters

Technology

Platform

accession-icon GSE73125
Transcriptome-based profiling reveals a macrophage pedigree and identifies Irf8 as pivotal for macrophage homeostasis and function
  • organism-icon Mus musculus
  • sample-icon 81 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Recent studies have shown that tissue macrophages (MF) arise from embryonic progenitors of the yolk sac (YS) and fetal liver and colonize the tissues before birth. Further studies have proposed that developmentally distinct tissue MF can be identified based on the differential expression of F4/80 and CD11b, but whether a characteristic transcriptional profile exists is largely unknown. Here, we established an inducible fate mapping system that facilitated the identification of A2 progenitors of the YS as source of F4/80hi but not CD11bhi MF. Large-scale transcriptional profiling of MF precursors from the YS until adulthood allowed the description of a complex MF pedigree. We further identified a distinct molecular signature of F4/80hi and CD11bhi MF and found that Irf8 was vital for MF maturation and the innate immune response. Our data provide new cellular and molecular insights into the origin and developmental pathways of tissue MF.

Publication Title

Transcriptome-based profiling of yolk sac-derived macrophages reveals a role for Irf8 in macrophage maturation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68859
Expression data from BIG LEAF
  • organism-icon Populus tremula x populus alba
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

We study differences in gene expression between Populus P35S::BL (BL-oe) lines and control, affecting plant growth and differentiation, and dormancy. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes droved by overexpression of BL gene.

Publication Title

BIG LEAF is a regulator of organ size and adventitious root formation in poplar.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE94691
Gene expression of ex vivo cultured osteoclasts during the course of differentiation
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The aim of this analysis was to investigate the changes in the gene expression pattern of ex vivo cultured wildtype murine osteoclasts during the course of osteoclastogenic differentiation.

Publication Title

The Lysosomal Protein Arylsulfatase B Is a Key Enzyme Involved in Skeletal Turnover.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE145697
The role of lncRNA Sarrah in human cardiomyocytes
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Long non-coding RNAs (lncRNAs) contribute to (patho)physiological processes in the heart. Aging is the major risk factor for cardiovascular disease and cardiomyocyte apoptosis is an underlying cause for age-related cardiac dysfunction. RNA sequencing of cardiomyocytes from young and aged mouse hearts revealed several aging-regulated lncRNAs. An siRNA screen for caspase activity identified the aging-regulated lncRNA Sarrah (ENSMUST00000140003) as anti-apoptotic, which we confirmed in human cells (human SARRAH is annotated as OXCT1-AS1). Importantly, human engineered heart tissue showed impaired contractile force development upon SARRAH knockdown compared with controls. Computational prediction of RNA-DNA triple helix formation showed that SARRAH may directly bind the promoters of genes downregulated after SARRAH silencing, which mainly consist of cell survival genes. Indeed, nuclear magnetic resonance spectroscopy confirmed RNA-DNA triple helix formation and cardiomyocytes lacking the triple helix-forming domain of Sarrah showed an increase in apoptosis. One of the key direct SARRAH targets is NRF2, an anti-oxidant transcription factor. Restoration of NRF2 levels after SARRAH silencing partially rescues the reduction in cell viability. RNA affinity purification mass spectrometry analysis identified CRIP2 as main protein interaction partner. Furthermore, SARRAH associates with acetyltransferase p300 and acetylated histone H3K27. Finally, Sarrah was also profoundly downregulated after acute myocardial infarction (AMI) in mice. Adeno-associated virus-mediated overexpression of Sarrah in mice showed better recovery of cardiac contractile function after AMI compared to control mice, as measured by echocardiography and magnetic resonance imaging, consistent with a decrease in cardiomyocyte cell death and an increase in endothelial cell proliferation. In summary, we identified the anti-apoptotic evolutionary conserved lncRNA Sarrah, which is downregulated by aging, as a pivotal regulator of cardiomyocyte survival. Sarrah overexpression has beneficial effects on AMI recovery highlighting it as a potential therapeutic approach against heart failure.

Publication Title

Aging-regulated anti-apoptotic long non-coding RNA Sarrah augments recovery from acute myocardial infarction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE71021
Endothelin-Mediated Changes in Gene Expression in Isolated Purified Rat Retinal Ganglion Cells
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

A growing body of evidence suggests that the vasoactive peptides endothelins (ETs) and their receptors (primarily the ETB receptor) are contributors to neurodegeneration in glaucoma. However, ETs actions in retinal ganglion cells (RGCs) are not fully understood. The purpose of this study was to determine ETs effects on gene expression in primary RGCs.

Publication Title

Endothelin-Mediated Changes in Gene Expression in Isolated Purified Rat Retinal Ganglion Cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE16495
Expression data from poplar apices
  • organism-icon Populus tremula x populus alba
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

We studied differences in gene expression between Populus P35S::EBB1 lines and control, affecting plant growth and differentiation, and dormancy. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes driven by overexpression of the EBB1 gene.

Publication Title

EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55813
Expression data from amiEBBB1 poplar apices
  • organism-icon Populus tremula x populus alba
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

We study gene expression Populus amiEBB1 lines affecting dormancy. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes droved by expression of artifical micro RNA (ami) targeting EBB1 gene.

Publication Title

EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE43162
Expression data from poplar roots under nitrogen limitation
  • organism-icon Populus tremula x populus alba
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Poplar Genome Array (poplar)

Description

We study the effect of nitrogen limitation on the growth and development of poplar roots. We used microarrays to detail the global program of gene expression underlying morphological and developmental changes driven by low nitrogen in the growth media. We report the effect of nitrogen limitation on the growth and development of poplar roots. Low nitrogen concentration led to increased root elongation followed by lateral root proliferation and finally increased root biomass. These morphological responses correlated with high and specific activation of genes encoding regulators of cell cycle and enzymes involved in cell wall biogenesis, growth and remodeling. Comparative analysis of poplar and Arabidopsis root transcriptomes under nitrogen deficiency indicated many similarities and diversification in the response in the two species. A reconstruction of genetic regulatory network (GRN) analysis revealed a sub-network centered on a PtaNAC1-like transcription factor. Consistent with the GRN predictions, root-specific upregulation of PtaNAC1 in transgenic poplar plants increased root biomass and led to significant changes in the expression of the connected genes specifically under low nitrogen. PtaNAC1 and its regulatory miR164 showed inverse expression profiles during response to LN, suggesting of a micro RNA mediated attenuation of PtaNAC1 transcript abundance in response to nitrogen deprivation.

Publication Title

Nitrogen deprivation promotes Populus root growth through global transcriptome reprogramming and activation of hierarchical genetic networks.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE1956
Mouse neuroblastoma Tcof1
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma. NB N1E-115 cells with wildtype, overexpression, knockdown of Tcof1.

Publication Title

Genomewide analysis of gene expression associated with Tcof1 in mouse neuroblastoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE45029
Doxycycline alters metabolism and proliferation of human cell lines
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The tetracycline antibiotics are widely used in biomedical research as mediators of inducible gene expression systems. Despite many known effects of tetracyclines on mammalian cells -- including inhibition of the mitochondrial ribosome -- there have been few reports on potential off-target effects at concentrations commonly used in inducible systems. Here, we report that in human cell lines, commonly used concentrations of doxycycline change gene expression patterns and concomitantly shift metabolism towards a more glycolytic phenotype, evidenced by increased lactate secretion and reduced oxygen consumption. We also show that these concentrations are sufficient to slow proliferation and alter cell cycle progression in vitro. These findings suggest that researchers using doxycycline in inducible expression systems should design appropriate controls to account for potential confounding effects of the drug on cellular metabolism.

Publication Title

Doxycycline alters metabolism and proliferation of human cell lines.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact