refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon SRP064515
Widespread shortening of 3' untranslated regions and increased exon inclusion characterize the human macrophage response to infection [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 198 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, IlluminaHiSeq2000

Description

Changes in gene regulation have long been known to play important roles in both innate and adaptive immune responses. However, post-transcriptional mechanisms involved in mRNA processing have been poorly studied despite emerging examples of their role as regulators of immune defenses. We sought to investigate the role of mRNA processing in the cellular responses of human macrophages to live bacterial infections. Overall design: Transcriptomic profiles of 198 infected (Listeria and Salmonella) and non-infected samples at multiple time points.

Publication Title

Adaptively introgressed Neandertal haplotype at the OAS locus functionally impacts innate immune responses in humans.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP051368
Bacterial Infection Remodels the DNA Methylation Landscape of Human Dendritic Cells (mRNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

DNA methylation is an epigenetic mark thought to be robust to environmental perturbations on a short time scale. Here, we challenge that view by demonstrating that the infection of human dendritic cells with a live pathogenic bacteria is associated with rapid changes in methylation levels at thousands of loci. We performed an integrated analysis of data on genome-wide DNA methylation, histone mark patterns, chromatin accessibility, and gene expression, before and after infection. We found that infection-induced changes in methylation rarely occur at promoter regions and instead localize to distal enhancer elements. Active demethylation is associated with extensive epigenetic remodeling, including the gain of histone activation marks and the induction of enhancer RNAs, and is strongly predictive of changes in the expression levels of nearby genes. Collectively, our observations show that active, rapid changes in DNA methylation in enhancers play a previously unappreciated role in regulating the transcriptional response of immune cells to infection. Overall design: Transcriptional profiles (polyA+) of 6 non-infected and 6 MTB-infected dendritic cell samples.

Publication Title

Bacterial infection remodels the DNA methylation landscape of human dendritic cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36953
Gene expression profiles of triple-negative breast cancer cells under the condition of 3D proliferation
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Triple-negative breast cancer (TNBC) is defined by the absence of estrogen and progesterone receptors and human epidermal growth factor receptor 2, and is the most lethal and aggressive subtype of breast cancer. However, the genes which relate to promote tumor aggressiveness in TNBC remain unclear.

Publication Title

Molecular hierarchy of heparin-binding EGF-like growth factor-regulated angiogenesis in triple-negative breast cancer.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage, Cell line

View Samples
accession-icon GSE72320
Gene expression profiling of MDA231 cells with alterations involving beta-oxidation pathway
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

In order to confirm the role of fatty acid -oxidation in Src regulation, we performed gene expression analysis in MDA231 cells from in vivo model treated with ETX or knockdown of CPT1 or CPT2 using shRNA. As expected, inhibition of -oxidation showed a gene expression pattern that is opposite to the published Src regulated gene pattern. The known Src up-regulated genes are down-regulated and Src down-regulated genes are up-regulated in -oxidation inhibited cells. Western Blotting further confirmed the gene expression pattern. Knockdown of CPT1 or CPT2 inhibited Src Y416 autophosphorylation as observed with ETX.

Publication Title

Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE72319
Gene expression profiling of transmitochondrial cybrids (triple negative breast cancer cells in SUM159 background)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used a transmitochondrial cybrid (cybrids)-based discovery approach to identify mitochondria-regulated cancer pathways in TN BCa. Cybrids were generated under a moderately metastatic TN BCa cell line SUM159 as the common nuclear background with mitochondria from benign breast epithelium (A1N4) and moderately metastatic (SUM159) TN BCa cells. In vitro and in vivo studies suggested that even under the common moderately cancerous nuclear background, mitochondria from benign cells inhibit and metastatic cell induce cancer properties of a moderately aggressive TN BCa cell. Gene expression studies identified c-Src onco-pathway as one of the major cancer pathways altered according to the mitochondria status of the cybrids.

Publication Title

Fatty Acid Oxidation-Driven Src Links Mitochondrial Energy Reprogramming and Oncogenic Properties in Triple-Negative Breast Cancer.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact