refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE60180
Gene expression profiles of human Ad5- and CMV-specific CD4 T cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Analysis of global gene expression profiles of FACS-sorted, human Ad5- and CMV-specific CD4 T cells from the same PBMC sample of healthy donros, using affymetrix Human Gene 2.0ST Gene-Chips;

Publication Title

Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE53335
Regulation of inducible genes in epithelial to mesenchymal transition by chromatinized PKC-theta
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st), Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE53266
Gene expression changes in a breast cancer stem cell model.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Epithelial to mesenchymal transition (EMT) is activated during cancer invasion and metastasis, enriches for cancer stem cells (CSCs), and contributes to therapeutic resistance and disease recurrence. The epithelial cell line MCF7, can be induced to undergo EMT with the induction of PKC by PMA. 5-10% of the resulting cells have a CSC phenotype. This study looks at the transcriptome of these cells and how it differs from cells with a non-CSC phenotype.

Publication Title

Chromatinized protein kinase C-θ directly regulates inducible genes in epithelial to mesenchymal transition and breast cancer stem cells.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE104755
The role of LSD1 in Epithelial to Mesenchymal Transition: gene expression profiling and ChIP-seq
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LSD1 activation promotes inducible EMT programs and modulates the tumour microenvironment in breast cancer.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE43124
Expression data from mobilized human CD34+ cells
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Bortezomib-based secondary induction therapy and mobilization could represent alternative strategies to reduce tumor burden. We used microarrays to investigate genome-wide expression changes between bortezomib and non-bortzomib mobilizaton strategies and identified distinct genes and pathways that were significantly differentially regulated.

Publication Title

Overcoming the response plateau in multiple myeloma: a novel bortezomib-based strategy for secondary induction and high-yield CD34+ stem cell mobilization.

Sample Metadata Fields

Specimen part, Disease, Disease stage, Treatment

View Samples
accession-icon SRP094696
Altered Ca+2 homeostasis induces Calpain-Cathepsin axis activation in sCJD.
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Sporadic Creutzfeldt-Jakob disease (sCJD) is the most prevalent form of human prion disease and it is characterized by the presence of neuronal loss, spongiform degeneration, chronic inflammation and the accumulation of misfolded and pathogenic prion protein (PrPSc). The molecular mechanisms underlying these alterations are largely unknown, but the presence of intracellular neuronal calcium (Ca+2) overload, a general feature in models of prion diseases, is suggested to play a key role in prion pathogenesis. Here we describe the presence of massive regulation of Ca+2 responsive genes in sCJD brain tissue, accompanied by two Ca+2-dependent processes: endoplasmic reticulum stress and the activation of the cysteine proteases Calpains 1/2. Pathogenic Calpain activation in sCJD is linked to the cleavage of their cellular substrates, impaired autophagy and lysosomal damage, which is partially reversed by Calpain inhibition in a cellular prion model. Calpain 1 treatment enhances seeding activity of PrPSc in a prion conversion assay. Neuronal lysosomal impairment caused by Calpain over activation leads to the release of the lysosomal protease Cathepsin S that in sCJD mainly localises in axons. Additionally, massive Cathepsin S overexpression is detected in microglial cells. Alterations in Ca+2 homeostasis and activation of Calpain-Cathepsin axis already occur at pre-clinical stages of the disease as detected in a humanized sCJD mouse model. Altogether our work indicates that unbalanced Calpain-Cathepsin activation is a relevant contributor to the pathogenesis of sCJD at multiple molecular levels and a potential target for therapeutic intervention. Overall design: To identify differentially expressed genes during development of sCJD pathology we analysed the expression levels in the cortical region of tg340-PRNP129MM mice infected with sCJD MM1 brain homogenates at pre-clinical (120 dpi) and clinical (180 dpi) stages.

Publication Title

Altered Ca<sup>2+</sup> homeostasis induces Calpain-Cathepsin axis activation in sporadic Creutzfeldt-Jakob disease.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE61172
Transcription in a Jurkat cell model of T cell memory
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Adaptive immune responses to infection result in the formation of memory T cells that respond more rapidly and robustly to reinfections, providing the basis of the immunological memory targeted by vaccines. Underlying the enhanced responsiveness of memory cells is their ability to rapidly up-regulate the transcription of key effector genes at a higher level compared to nave cells (termed transcriptional memory). While transcriptionally permissive histone modifications are known to provide chromatin structures that facilitate transcriptional memory, the molecular mechanisms that underpin this process still remain elusive. Here we investigate the transcriptional response of the Jurkat T cell line to stimulation with PMA and Ionomycin and determine if this response differs in cells that have seen stimuli previously.

Publication Title

Nuclear PKC-θ facilitates rapid transcriptional responses in human memory CD4+ T cells through p65 and H2B phosphorylation.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE64619
A Molecular Portrait of Potentially Curable Prostate Cancer
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Herein we describe a molecular portrait of potentially curable, Gleason 7 and intermediate risk prostate cancer based on genome-wide CNV profiles of 96 patients, and subsequent whole-genome sequencing of 28 tumours from 10 patients, using DNA quantities that are achievable in diagnostic biopsies (50 ng). We show that Gleason 7 cancer is highly heterogeneous at the SNV, CNV, and intra-chromosomal translocation levels, and is characterized by a very low number of recurrent SNVs but significant structural variation. We identified a novel recurrent MYCL1 amplification, which was strongly associated with TP53 deletion and prognostic for biochemical recurrence in this cohort. Moreover, we identified clear evidence of divergent tumour evolution in multi focal cancer and, in 2/5 cases evaluated, multiple tumours of independent clonal origin. Taken together, these data represent the first systematic evaluation of the differential genomics of potentially curable prostate cancer, and strongly suggest that a more robust understanding of the relationship between genetic heterogeneity and clinical outcomes is required to effectively develop biomarkers of prognosis based on tumour genomics.

Publication Title

Spatial genomic heterogeneity within localized, multifocal prostate cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP119485
Bmp2 and Notch cooperate to pattern the embryonic endocardium
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Our study describes in detail the role of Bmp2 during cardiac valve developmnent and its implication in Notch pathway activation. Overall design: Hearts were isolated from WT and Bmp2GOF;Nkx2.5-Cre mouse embryos at stage E9.5 and their expression profile characterized by RNA-seq

Publication Title

Bmp2 and Notch cooperate to pattern the embryonic endocardium.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE15228
Gene expression differences between TAF4b-KO, Het and WT ovaries at 3 weeks of age
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The rapid decline of ovarian function in TAF4b-null mice begins in early postnatal life and follicle depletion is completed by sixteen weeks.

Publication Title

Accelerated ovarian aging in the absence of the transcription regulator TAF4B in mice.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact