refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 28 results
Sort by

Filters

Technology

Platform

accession-icon GSE1918
Htt-N171 HD in vitro
  • organism-icon Rattus norvegicus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Expression 230A Array (rae230a)

Description

4 Treatment groups:

Publication Title

Dysregulation of gene expression in primary neuron models of Huntington's disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE12481
TRE-Htt-N853 Huntington's Disease in vitro model
  • organism-icon Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Primary neuron model of Huntington's Disease. 2 treatment groups: A) Infected 4 weeks prior with TRE-Htt-N853-18Q-expressing recombinant lentivirus, B) Infected 4 weeks prior with TRE-Htt-N853-82Q-expressing recombinant lentivirus

Publication Title

Dysregulation of gene expression in primary neuron models of Huntington's disease shows that polyglutamine-related effects on the striatal transcriptome may not be dependent on brain circuitry.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51837
Effects of exercise on gene and miRNA expression level in human monocytes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE41915
Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE11761
Brief bout of exercise alters gene expression in peripheral blood mononuclear cells of early- and late-pubertal males
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared PBMC genomic response to exercise in both early (EB) and late-pubertal boys (LB)

Publication Title

Brief bout of exercise alters gene expression in peripheral blood mononuclear cells of early- and late-pubertal males.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14642
A Brief Bout of Exercise Alters Gene Expression and Distinct Gene Pathways in PBMC of Early- and Late-Pubertal Females
  • organism-icon Homo sapiens
  • sample-icon 39 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We compared PBMC genomic response to exercise in both early (EG) and late-pubertal girls (LG)

Publication Title

A brief bout of exercise alters gene expression and distinct gene pathways in peripheral blood mononuclear cells of early- and late-pubertal females.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE41914
Effects of exercise on gene expression level in human NK Cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We tested the hypothesis on the mechanisms responsible for the early control of NK cell function by identifying a discrete set of genes in circulating NK cells that were altered by exercise.

Publication Title

Impact of brief exercise on peripheral blood NK cell gene and microRNA expression in young adults.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE51835
Effects of exercise on gene expression level in human monocytes
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We tested the hypothesis on the mechanisms responsible for the early control of monocytes function by identifying a discrete set of genes in circulating monocytes that were altered by exercise.

Publication Title

Impact of brief exercise on circulating monocyte gene and microRNA expression: implications for atherosclerotic vascular disease.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE8668
Effects of exercise on gene expression in human neutrophils
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Relatively brief bouts of exercise alter gene expression in peripheral blood mononuclear cells (PBMCs), but whether or not exercise changes gene expression in circulating neutrophils (whose numbers, like PBMCs, increase) is not known. We hypothesized that exercise would activate neutrophil genes involved in apoptosis, inflammation, and cell growth and repair, since these functions in leukocytes are known to be influenced by exercise. Blood was sampled before and immediately after 30-min of constant, heavy (about 80% peak O2 uptake) cycle-ergometer exercise in 12 healthy men (19-29 yr old) of average fitness. Neutrophils were isolated using density gradients; RNA was hybridized to Affymetrix U133+2 Genechip arrays. Using FDR<0.05 with 95% confidence a total of 526 genes were differentially expressed between before and after exercise. 316 genes had higher expression after exercise. The Jak/STAT pathway, known to inhibit apoptosis, was significantly activated (EASE score, p<0.005), but 14 genes were altered in a way likely to accelerate apoptosis as well. Similarly, both proinflammatory (e.g., IL32, TNFSF8 and CCR5) and anti-inflammatory (e.g., ANXA1) were affected. Growth and repair genes like AREG and FGF2 receptor genes (involved in angiogenesis) were also activated. Finally, a number of neutrophil genes known to be involved in pathological conditions like asthma and arthritis were altered by exercise, suggesting novel links between physical activity and disease or its prevention. In summary, brief heavy exercise leads to a previously unknown substantial and significant alteration in neutrophil gene expression.

Publication Title

Effects of 30 min of aerobic exercise on gene expression in human neutrophils.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE117028
Gene Expression Profiles of Atxn3-WT and Atxn3-KO mouse embryonic fibroblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disorder caused by a polyglutamine-encoding CAG repeat expansion in the ATXN3 gene, which encodes a deubiquitinating enzyme, ATXN3, implicated in numerous quality control pathways. Several mechanisms have been proposed to explain the pathogenic role of mutant polyQ-expanded ATXN3 in SCA3 including disease protein aggregation, impairment of ubiquitin-proteasomal degradation and transcriptional dysregulation. A better understanding of the normal functions of this protein may shed light on SCA3 disease pathogenesis. To assess the potential normal role of ATXN3 in regulating transcription, we compared gene expression profiles in wildtype (WT) versus Atxn3 knockout (KO) mouse embryonic fibroblasts (MEFs).

Publication Title

Loss of the Spinocerebellar Ataxia type 3 disease protein ATXN3 alters transcription of multiple signal transduction pathways.

Sample Metadata Fields

Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact