refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 1 of 1 results
Sort by

Filters

Technology

Platform

accession-icon GSE108280
lnc-Mir100HG promotes cell proliferation by modulating the interation between HuR and its target mRNAs
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Long non-coding RNAs (lncRNAs) regulate vital biological processes, including cell proliferation, differentiation and development. A subclass of lncRNAs is synthesized from microRNA host genes (MIRHGs) due to pre-miRNA processing, and is categorized as miRNA-host gene lncRNAs (lnc-miRHGs). Presently, it is not clear whether lnc-miRHG perform additional functions. We demonstrate a miRNA-independent role for a nuclear-enriched lnc-miRHG in cell cycle progression. MIR100HG produces spliced and stable lncRNAs (lnc-MIR100HG) that display elevated levels during the G1 phase of the cell cycle. Depletion of lnc-MIR100HG in human cells results in aberrant cell cycle progression with out altering the levels of miRNA encoded within MIR100HG. Notably, lnc-MIR100HG interacts with the HuR/Elav as well as with several of HuR-target mRNAs. Further, lnc-MIR100HG-depleted cells show reduced interaction between HuR and its target mRNAs, indicating that lnc-MIR100HG facilitates interaction between HuR and target mRNAs. Our studies have unearthed novel roles played by miRHG-encoded lncRNAs in regulating RNA binding protein activity, thereby underscoring the importance of determining the function of several hundreds of miRHG lncRNAs that are present in human genome.

Publication Title

MIR100 host gene-encoded lncRNAs regulate cell cycle by modulating the interaction between HuR and its target mRNAs.

Sample Metadata Fields

Cell line, Treatment

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact